Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T15:54:42.030Z Has data issue: false hasContentIssue false

High resolution DNA fingerprinting by AFLP to study the genetic variation among Oesophagostomum bifurcum (Nematoda) from human and non-human primates from Ghana

Published online by Cambridge University Press:  27 October 2004

J. M. DE GRUIJTER
Affiliation:
Department of Parasitology, Leiden University Medical Center, University of Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
R. B. GASSER
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
A. M. POLDERMAN
Affiliation:
Department of Parasitology, Leiden University Medical Center, University of Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
V. ASIGRI
Affiliation:
Parasitic Diseases Research Laboratory, PO Box 967, Tamale, Ghana
LENIE DIJKSHOORN
Affiliation:
Department of Infectious Diseases, Leiden University Medical Center, University of Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands

Abstract

An AFLP approach was established to investigate genetic diversity within Oesophagostomum bifurcum (order Strongylida) from human and non-human primates. Evaluation of different combinations of restriction enzymes (n=8) and primers (n=29) demonstrated that the use of HindIII/BglII digested templates and primers with the selective nucleotides +AG/+AC, respectively, was the most effective for the analysis of O. bifurcum DNA. A total of 63 O. bifurcum adults from human, Patas monkey, Mona monkey and Olive baboon hosts from different geographical regions in Ghana were subjected to analysis using this method. Cluster analysis revealed 4 genetically distinct groups, namely O. bifurcum from the Patas monkey (I), from the Mona monkey (II), from humans (III) and from the Olive baboon (IV). These findings were concordant with those achieved previously using RAPD analysis and supports population genetic substructuring within O. bifurcum according to host species. The results demonstrated the effectiveness of the present AFLP method for establishing genetic variation within O. bifurcum, and indicates its applicability to other parasitic nematodes of human and/or veterinary health importance.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AGBO, E. E., MAJIWA, P. A., CLAASSEN, H. J. & TE PAS, M. F. ( 2002). Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting. Parasitology 124, 349358.CrossRefGoogle Scholar
AJMONE-MARSAN, P., NEGRINI, R., MILANESI, E., BOZZI, R., NIJMAN, I. J., BUNTJER, J. B., VALENTINI, A. & LENSTRA, J. A. ( 2002). Genetic distances within and across cattle breeds as indicated by biallelic AFLP markers. Animal Genetics 33, 280286.CrossRefGoogle Scholar
BLOTKAMP, J., KREPEL, H. P., KUMAR, V., BAETA, S., VAN 'T NOORDENDE, J. M. & POLDERMAN, A. M. ( 1993). Observations on the morphology of adults and larval stages of Oesophagostomum sp. isolated from man in northern Togo and Ghana. Journal of Helminthology 67, 4961.Google Scholar
CHABAUD, A. G. & LARIVIÈRE, M. ( 1958). Sur les oesophagostomes parasites de l'homme. Bulletin de la Société de Pathologie Exotique 51, 384393.Google Scholar
DE GRUIJTER, J. M., POLDERMAN, A. M., ZHU, X. Q. & GASSER, R. B. ( 2002). Screening for haplotypic variability within Oesophagostomum bifurcum (Nematoda) employing a single-strand conformation polymorphism approach. Molecular and Cellular Probes 16, 185190.CrossRefGoogle Scholar
DE GRUIJTER, J. M., ZIEM, J., VERWEIJ, J. J., POLDERMAN, A. M. & GASSER, R. B. ( 2004). Genetic substructuring within Oesophagostomum bifurcum (Nematoda) from human and non-human primates from Ghana based on random amplification of polymorphic DNA analysis. American Journal of Tropical Medicine and Hygiene 71, 227233.Google Scholar
EBERHARD, M. L., KOVACS-NACE, E., BLOTKAMP, J., VERWEIJ, J. J., ASIGRI, V. A. & POLDERMAN, A. M. ( 2001). Experimental Oesophagostomum bifurcum in monkeys. Journal of Helminthology 75, 5156.CrossRefGoogle Scholar
GASSER, R. B., CHILTON, N. B., HOSTE, H. & BEVERIDGE, I. ( 1993). Rapid sequencing of rDNA from single worms and eggs of parasitic helminths. Nucleic Acids Research 21, 25252526.CrossRefGoogle Scholar
GASSER, R. B., MONTI, J. R., BAO-ZHEN, Q., POLDERMAN, A. M., NANSEN, P. & CHILTON, N. B. ( 1998). A mutation scanning approach for the identification of hookworm species and analysis of population variation. Molecular and Biochemical Parasitology 92, 303312.CrossRefGoogle Scholar
GASSER, R. B., WOODS, W. G., BLOTKAMP, C., VERWEIJ, J., STOREY, P. A. & POLDERMAN, A. M. ( 1999). Screening for nucleotide variations in ribosomal DNA arrays of Oesophagostomum bifurcum by polymerase chain reaction-coupled single-strand conformation polymorphism. Electrophoresis 20, 14861491.3.0.CO;2-9>CrossRefGoogle Scholar
GIGASE, P., BAETA, S., KUMAR, V. & BRANDT, J. ( 1987). Frequency of symptomatic human oesophagostomiasis (helminthoma) in northern Togo. In Helminth Zoonosis (ed. Geerts, S., Kumar, V. & Brandt, J.), pp. 233236. Martinus Nijhoff, Dordrecht, The Netherlands.
HÖGLUND, J., ENGSTRÖM, A., MORRISON, D. A. & MATTSSON, J. G. ( 2004). Genetic diversity assessed by amplified fragment length polymorphism analysis of the parasitic nematode Dictyocaulus viviparus the lungworm of cattle. International Journal for Parasitology 34, 475484.CrossRefGoogle Scholar
HU, M., CHILTON, N. B., ABS EL-OSTA, Y. G. & GASSER, R. B. ( 2003). Comparative analysis of mitochondrial genome data for Necator americanus from two endemic regions reveals substantial genetic variation. International Journal for Parasitology 33, 955963.CrossRefGoogle Scholar
HU, M., CHILTON, N. B., ZHU, X. & GASSER, R. B. ( 2002). Single-strand conformation polymorphism-based analysis of mitochondrial cytochrome c oxidase subunit 1 reveals significant substructuring in hookworm populations. Electrophoresis 23, 2734.3.0.CO;2-7>CrossRefGoogle Scholar
JANSSEN, P. J. D. ( 2001). Selective Restriction Fragment Amplification by AFLP™. In New Approaches for the Generation and Analysis of Microbial Typing Data (ed. Dijkshoorn, L. & Towner, K. J.), pp. 177210. Elsevier, Amsterdam.CrossRef
JANSSEN, P. J. D., COOPMAN, R., HUYS, G., SWINGS, J., BLEEKER, M., VOS, P., ZABEAU, M. & KERSTERS, K. ( 1996). Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142, 18811893.CrossRefGoogle Scholar
JANSSEN, P. J. D., MAQUELIN, K., COOPMAN, R., TJERNBERG, I., BOUVET, P., KERSTERS, K. & DIJKSHOORN, L. ( 1997). Discrimination of Acinetobacter genomic species by AFLP fingerprinting. International Journal of Systematic Bacteriology 47, 11791187.CrossRefGoogle Scholar
MARSHALL, D. G. & DENEKA, S. I. ( 1966). Abdominal abcess due to helminthoma of the ascending colon. Canadian Journal of Veterinary Research 100, 913914.Google Scholar
MUELLER, U. G., LIPARI, S. E. & MILGROOM, M. G. ( 1996). Amplified fragment length polymorphism (AFLP) fingerprinting of symbiotic fungi cultured by the fungus-growing ant Cyphomyrmex minutus. Molecular Ecology 5, 119122.CrossRefGoogle Scholar
OTSEN, M., HOEKSTRA, R., PLAS, M. E., BUNTJER, J. B., LENSTRA, J. A. & ROOS, M. H. ( 2001). Amplified fragment length polymorphism analysis of genetic diversity of Haemonchus contortus during selection for drug resistance. International Journal for Parasitology 31, 11381143.CrossRefGoogle Scholar
PAGES, A., KPOZO, K., BAETA, S. M. & AKPO-ALLAVO, K. ( 1988). La “tumeur” de Dapaong, helminthiase a Oesophagostome. Annales d'Anatomie Pathologique 8, 332335.Google Scholar
PEAKALL, R., EBERT, D., SCOTT, L. J., MEAGHER, P. F. & OFFORD, C. A. ( 2003). Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Molecular Ecology 12, 23312343.CrossRefGoogle Scholar
PIT, D. S., RIJCKEN, F. E., RASPOORT, E. C., BAETA, S. M. & POLDERMAN, A. M. ( 1999). Geographic distribution and epidemiology of Oesophagostomum bifurcum and hookworm infections in humans in Togo. American Journal of Tropical Medicine and Hygiene 61, 951955.CrossRefGoogle Scholar
POLDERMAN, A. M., ANEMANA, S. D. & ASIGRI, V. ( 1999). Human oesophagostomiasis: a regional public health problem in Africa. Parasitology Today 15, 129130.CrossRefGoogle Scholar
POLDERMAN, A. M. & BLOTKAMP, C. ( 1995). Oesophagostomum infections in humans. Parasitology Today 11, 451460.CrossRefGoogle Scholar
POLDERMAN, A. M., KREPEL, H. P., BAETA, S., BLOTKAMP, J. & GIGASE, P. ( 1991). Oesophagostomiasis, a common infection of man in northern Togo and Ghana. American Journal of Tropical Medicine and Hygiene 44, 336344.CrossRefGoogle Scholar
ROMSTAD, A., GASSER, R. B., NANSEN, P., POLDERMAN, A. M. & CHILTON, N. B. ( 1998). Necator americanus (Nematoda: Ancylostomatidae) from Africa and Malaysia have different ITS-2 rDNA sequences. International Journal for Parasitology 28, 611615.CrossRefGoogle Scholar
SCHWARTZ, J., TATTERSALL, I. & ELDREDGE, N. ( 1978). Phylogeny and classification of the Primates revisited. Year Book of Physical Anthropology 21, 95133.Google Scholar
SEMBLAT, J. P., BONGIOVANNI, M., WAJNBERG, E., DALMASSO, A., ABAD, P. & CASTAGNONE-SERENO, P. ( 2000). Virulence and molecular diversity of parthenogenetic root-knot nematodes, Meloidogyne spp. Heredity 84, 8189.CrossRefGoogle Scholar
SKRJABIN, K. I., SHIKHOBALOVA, N. P., SCHULZ, R. S., POPOVA, T. I., BOEV, S. N. & DELYAMURE, S. L. ( 1952). Strongylata. In Keys to Parasitic Nematodes Vol. 3 (ed. Skrjabin, K. I.), pp. 3540. E.J. Brill, New York.
SOKAL, R. R. & ROHLF, F. J. ( 1962). The comparison of dendrograms by objective methods. Taxon XI, 3340.CrossRefGoogle Scholar
STEWART, T. B. & GASBARRE, L. C. ( 1989). The veterinary importance of nodular worms (Oesophagostomum spp.). Parasitology Today 5, 209213.CrossRefGoogle Scholar
STOREY, P. A., FAILE, G., HEWITT, E., YELIFARI, L., POLDERMAN, A. M. & MAGNUSSEN, P. ( 2000). Clinical epidemiology and classification of human oesophagostomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 177182.CrossRefGoogle Scholar
STRUELENS, M. J. ( 1996). Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clinical Microbiology and Infection 2, 211.CrossRefGoogle Scholar
VAN ELDERE, J., JANSSEN, P., HOEFNAGELS-SCHUERMANS, A., VAN LIERDE, S. & PEETERMANS, W. E. ( 1999). Amplified-fragment length polymorphism analysis versus macro-restriction fragment analysis for molecular typing of Streptococcus pneumoniae isolates. Journal of Clinical Microbiology 37, 20532057.Google Scholar
VERWEIJ, J. J., PIT, D. S., VAN LIESHOUT, L., BAETA, S. M., DERY, G. D., GASSER, R. B. & POLDERMAN, A. M. ( 2001). Determining the prevalence of Oesophagostomum bifurcum and Necator americanus infections using specific PCR amplification of DNA from faecal samples. Tropical Medicine and International Health 6, 726731.CrossRefGoogle Scholar
VOS, P., HOGERS, R., BLEEKER, M., REIJANS, M., VAN DE LEE, T., HORNES, M., FRIJTERS, A., POT, J., PELEMAN, J. & KUIPER, M. ( 1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.CrossRefGoogle Scholar