Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T04:58:40.191Z Has data issue: false hasContentIssue false

Genetic filtering and optimal sampling of Schistosoma mansoni populations

Published online by Cambridge University Press:  04 July 2006

R. E. SORENSEN
Affiliation:
Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN 56001, USA
N. B. RODRIGUES
Affiliation:
Centro de Pesquisas René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
G. OLIVEIRA
Affiliation:
Centro de Pesquisas René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
A. J. ROMANHA
Affiliation:
Centro de Pesquisas René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
D. J. MINCHELLA
Affiliation:
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA

Abstract

Allelic variation in 6 microsatellite markers was compared between frozen Schistosoma mansoni eggs and laboratory-passaged worms originating from the same 5 fecal samples obtained from Brazilian residents. Based on allelic richness values, the number of alleles detected per locus did not differ between egg and worm DNA templates. However, our ability to score loci differed between these DNA templates, with worms providing more scored loci per individual than eggs. Differences also existed between the worms and eggs in the identity of the specific alleles that were detected. Additionally, we observed a reduction in homozygous genotypes among laboratory-passaged worms relative to the eggs. Allelic diversity curves were calculated by genotyping all worms from a representative host sample to determine the relationship between the number of alleles detected at a locus and the number of worms genotyped. Curves for the 5 residents' worm infrapopulations for each of the loci were very similar. The equation y=19·55×ln(x)+9·992 explained the association between sampling effort (x) and number of alleles detected (y) with an R2 of 0·775. In conclusion, egg DNA templates and allelic diversity curves can benefit efforts to discern the sociological, ecological and evolutionary forces impacting the genetic diversity and disease epidemiology of human schistosomes.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barral, V., This, P., Imbert-Establet, D., Combes, C. and Delseny, M. ( 1993). Genetic variability and evolution of the Schistosoma genome analysed by using random amplified polymorphic DNA markers. Molecular and Biochemical Parasitology 59, 211222.CrossRefGoogle Scholar
Barral, V., Morand, S., Pointier, J. P. and Theron, A. ( 1996). Distribution of schistosome genetic diversity within naturally infected Rattus rattus detected by RAPD markers. Parasitology 113, 511517.CrossRefGoogle Scholar
Curtis, J., Fraga, L. A., de Souza, C. P., Correa-Oliveira, R. and Minchella, D. J. ( 2001). Widespread heteroplasmy in schistosomes makes an mtVNTR marker “nearsighted”. Journal of Heredity 92, 248253.CrossRefGoogle Scholar
Curtis, J., Sorensen, R. E. and Minchella, D. J. ( 2002). Schistosome genetic diversity: the implications of population structure as detected with microsatellite markers. Parasitology 125 (Suppl,) S51S59.CrossRefGoogle Scholar
Durand, P., Sire, C. and Theron, A. ( 2000). Isolation of microsatellite markers in the digenetic trematode Schistosoma mansoni from Guadeloupe Island. Molecular Ecology 9, 997998.CrossRefGoogle Scholar
El Mousadik, A. and Petit, R. J. ( 1996). High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoretical and Applied Genetics 92, 832839.CrossRefGoogle Scholar
Eppert, A., Lewis, F. A., Grzywacz, C., Coura Filho, P., Caldas, I. and Minchella, D. J. ( 2002). Distribution of schistosome infections in molluscan hosts at different levels of parasite prevalence. Journal of Parasitology 88, 232236.CrossRefGoogle Scholar
Floyd, R., Abebe, E., Papert, A. and Blaxter, M. ( 2002). Molecular barcodes for soil nematode identification. Molecular Ecology 11, 839850.CrossRefGoogle Scholar
Gobert, G. N., Chai, M., Duke, M. and McManus, D. P. ( 2005). Copro-PCR based detection of Schistosoma eggs using mitochondrial DNA markers. Molecular and Cellular Probes 19, 250254.CrossRefGoogle Scholar
Goudet, J. ( 2001). FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995).
LoVerde, P. T., DeWald, J., Minchella, D. J., Bosshardt, S. C. and Damian, R. T. ( 1985). Evidence for host-induced selection in Schistosoma mansoni. Journal of Parasitology 71, 732734.CrossRefGoogle Scholar
Minchella, D. J., Lewis, F. A., Sollenberger, K. M. and Williams, J. A. ( 1994). Genetic diversity of Schistosoma mansoni: quantifying strain heterogeneity using a polymorphic DNA element. Molecular and Biochemical Parasitology 68, 307313.CrossRefGoogle Scholar
Minchella, D. J., Sollenberger, K. M. and Pereira de Souza, C. ( 1995). Distribution of schistosome genetic diversity within molluscan intermediate hosts. Parasitology 111, 217220.CrossRefGoogle Scholar
Peakall, R. and Smouse, P. E. ( 2005). GenAlEx 6: Genetic Analysis in Excel. http://www.anu.edu.au/BoZo/GenAlEx/. Population genetic software for teaching and research. The Australian National University.
Petit, R. J., El Mousadik, A. and Pons, O. ( 1998). Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12, 844855.CrossRefGoogle Scholar
Pontes, L. A., Dias Neto, E. and Rabello, A. ( 2002). Detection by polymerase chain reaction of Schistosoma mansoni DNA in human serum and feces. American Journal of Tropical Medicine and Hygiene 66, 157162.CrossRefGoogle Scholar
Prugnolle, F., De Meeus, T., Durand, P., Sire, C. and Theron, A. ( 2002). Sex-specific genetic structure in Schistosoma mansoni: evolutionary and epidemiological implications. Molecular Ecology 11, 12311238.CrossRefGoogle Scholar
Prugnolle, F., Théron, A., Durand, P. and De Meeus, T. ( 2004). Test of pangamy by genetic analysis of Schistosoma mansoni pairs with its natural murine host in Guadeloupe. Journal of Parasitology 90, 507509.CrossRefGoogle Scholar
Prugnolle, F., Théron, A., Pointier, J.-P., Jabbour-Zahab, R. and Jarne, P. ( 2005). Dispersal in a parasitic worm and its two hosts: consequence for local adaptation. Evolution 59, 296303.CrossRefGoogle Scholar
Rodrigues, N. B., Loverde, P. T., Romanha, A. J. and Oliveira, G. ( 2002). Characterization of new Schistosoma mansoni microsatellite loci in sequences obtained from public DNA databases and microsatellite enriched genomic libraries. Mem Inst Oswaldo Cruz 97 (Suppl. 1), 7175.CrossRefGoogle Scholar
Shrivastava, J., Gower, C. M., Balolong, E. J., Wang, T. P., Quian, B. Z. and Webster, J. P. ( 2005). Population genetics of multi-host parasites—the case for molecular epidemiological studies of Schistosoma japonicum using larval stages from naturally infected hosts. Parasitology 131, 110.CrossRefGoogle Scholar
Silva, L. K., Liu, S. and Blanton, R. E. ( 2006). Microsatellite analysis of pooled Schistosoma mansoni DNA: an approach for studies of parasite populations. Parasitology 132, 331338.CrossRefGoogle Scholar
Sire, C., Durand, P., Pointier, J. P. and Theron, A. ( 1999). Genetic diversity and recruitment pattern of Schistosoma mansoni in a Biomphalaria glabrata snail population: a field study using random-amplified polymorphic DNA markers. Journal of Parasitology 85, 436441.CrossRefGoogle Scholar
Sire, C., Durand, P., Pointier, J. P. and Theron, A. ( 2001 a). Genetic diversity of Schistosoma mansoni within and among individual hosts (Rattus rattus): infrapopulation differentiation at microspatial scale. International Journal for Parasitology 31, 16091616.Google Scholar
Sire, C., Langand, J., Barral, V. and Theron, A. ( 2001 b). Parasite (Schistosoma mansoni) and host (Biomphalaria glabrata) genetic diversity: population structure in a fragmented landscape. Parasitology 122, 545554.Google Scholar
Sorensen, R. E., Curtis, J. and Minchella, D. J. ( 1998). Intraspecific variation in the rDNA ITS loci of 37-collar-spined echinostomes from North America: implications for sequence-based diagnoses and phylogenetics. Journal of Parasitology 84, 992997.CrossRefGoogle Scholar
Stohler, R. A., Curtis, J. and Minchella, D. J. ( 2004). A comparison of microsatellite polymorphism and heterozygosity among field and laboratory populations of Schistosoma mansoni. International Journal of Parasitology 34, 595601.CrossRefGoogle Scholar
Theron, A., Sire, C., Rognon, A., Prugnolle, F. and Durand, P. ( 2004). Molecular ecology of Schistosoma mansoni transmission inferred from the genetic composition of larval and adult infrapopulations within intermediate and definitive hosts. Parasitology 129, 571585.CrossRefGoogle Scholar