Skip to main content Accessibility help

Gene expression profiling of Leishmania (Leishmania) donovani: overcoming technical variation and exploiting biological variation

  • S. DECUYPERE (a1) (a2), M. VANAERSCHOT (a1) (a3), S. RIJAL (a4), V. YARDLEY (a5), L. MAES (a6), S. DE DONCKER (a1), F. CHAPPUIS (a7) and J.-C. DUJARDIN (a1)...


Gene expression profiling is increasingly used in the field of infectious diseases for characterization of host, pathogen and the nature of their interaction. The purpose of this study was to develop a robust, standardized method for comparative expression profiling and molecular characterization of Leishmania donovani clinical isolates. The limitations and possibilities associated with expression profiling in intracellular amastigotes and promastigotes were assessed through a series of comparative experiments in which technical and biological parameters were scrutinized. On a technical level, our results show that it is essential to use parasite harvesting procedures that involve minimal disturbance of the parasite's environment in order to ‘freeze’ gene expression levels instantly; this is particularly a delicate task for intracellular amastigotes and for specific ‘sensory’ genes. On the biological level, we demonstrate that gene expression levels fluctuate during in vitro development of both intracellular amastigotes and promastigotes. We chose to use expression-curves rather than single, specific, time-point measurements to capture this biological variation. Intracellular amastigote protocols need further refinement, but we describe a first generation tool for high-throughput comparative molecular characterization of patients' isolates, based on the changing expression profiles of promastigotes during in vitro differentiation.


Corresponding author

*Corresponding author: Institute of Tropical Medicine, Unit of Molecular Parasitology, Nationalestraat 155, B-2000 Antwerp, Belgium. Tel: +32 3 2476358. Fax: +32 3 2476359. E-mail:


Hide All
Akopyants, N. S., Matlib, R. S., Bukanova, E. N., Smeds, M. R., Brownstein, B. H., Stormo, G. D. and Beverley, S. M. (2004). Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Molecular and Biochemical Parasitology 136, 7186.
Almeida, R., Gilmartin, B. J., McCann, S. H., Norrish, A., Ivens, A. C., Lawson, D., Levick, M. P., Smith, D. F., Dyall, S. D., Vetrie, D., Freeman, T. C., Coulson, R. M. and others (2004). Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Molecular and Biochemical Parasitology 136, 87100.
Barak, E., Amin-Spector, S., Gerliak, E., Goyard, S., Holland, N. and Zilberstein, D. (2005). Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Molecular and Biochemical Parasitology 141, 99108.
Bates, P. A. and Tetley, L. (1993). Leishmania mexicana: induction of metacyclogenesis by cultivation of promastigotes at acidic pH. Experimental Parasitology 76, 412423.
Beitz, E. (2005). Aquaporins from pathogenic protozoan parasites: structure, function and potential for chemotherapy. Biology of the Cell 97, 373383.
Boucher, N., Wu, Y., Dumas, C., Dube, M., Sereno, D., Breton, M. and Papadopoulou, B. (2002). A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3′-untranslated region element. The Journal of Biological Chemistry 277, 1951119520.
Campbell, D. A., Thomas, S. and Sturm, N. R. (2003). Transcription in kinetoplastid protozoa: why be normal? Microbes and Infection 5, 12311240.
Chaussabel, D., Semnani, R. T., McDowell, M. A., Sacks, D., Sher, A. and Nutman, T. B. (2003). Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102, 672681.
Clayton, C. E. (2002). Life without transcriptional control? From fly to man and back again. The EMBO Journal 21, 18811888.
Cohen-Freue, G., Holzer, T. R., Forney, J. D. and McMaster, W. R. (2007). Global gene expression in Leishmania. International Journal for Parasitology 37, 10771086.
Decuypere, S., Rijal, S., Yardley, V., De Doncker, S., Laurent, T., Khanal, B., Chappuis, F. and Dujardin, J. C. (2005). Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrobial Agents and Chemotherapy 49, 46164621.
Duncan, R. (2004). DNA microarray analysis of protozoan parasite gene expression: outcomes correlate with mechanisms of regulation. Trends in Parasitology 20, 211215.
Duncan, R., Alvarez, R., Jaffe, C. L., Wiese, M., Klutch, M., Shakarian, A., Dwyer, D. and Nakhasi, H. L. (2001). Early response gene expression during differentiation of cultured Leishmania donovani. Parasitology Research 87, 897906.
Duncan, R. C., Salotra, P., Goyal, N., Akopyants, N. S., Beverley, S. M. and Nakhasi, H. L. (2004). The application of gene expression microarray technology to kinetoplastid research. Current Molecular Medicine 4, 611621.
Fong, D. and Chang, K. P. (1981). Tubulin biosynthesis in the developmental cycle of a parasitic protozoan, Leishmania mexicana: changes during differentiation of motile and nonmotile stages. Proceedings of the National Academy of Sciences, USA 78, 76247628.
Hart, D. T., Vickerman, K. and Coombs, G. H. (1981). A quick, simple method for purifying Leishmania mexicana amastigotes in large numbers. Parasitology 82, 345355.
Heid, C. A., Stevens, J., Livak, K. J. and Williams, P. M. (1996). Real time quantitative PCR. Genome Research 6, 986994.
Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. and Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology 8, R19.
Holzer, T. R., McMaster, W. R. and Forney, J. D. (2006). Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Molecular and Biochemical Parasitology 146, 198218.
Hromatka, B. S., Noble, S. M. and Johnson, A. D. (2005). Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Molecular Biology of the Cell 16, 48144826.
Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M. A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z. and others (2005). The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436442.
Laurent, T., Rijal, S., Yardley, V., Croft, S., De Doncker, S., Decuypere, S., Khanal, B., Singh, R., Schonian, G., Kuhls, K., Chappuis, F. and Dujardin, J. C. (2007). Epidemiological dynamics of antimonial resistance in Leishmania donovani: Genotyping reveals a polyclonal population structure among naturally-resistant clinical isolates from Nepal. Infection, Genetics and Evolution 7, 206212.
Martinez-Calvillo, S., Nguyen, D., Stuart, K. and Myler, P. J. (2004). Transcription initiation and termination on Leishmania major chromosome 3. Eukaryotic Cell 3, 506517.
McAleese, F., Wu, S. W., Sieradzki, K., Dunman, P., Murphy, E., Projan, S. and Tomasz, A. (2006). Overexpression of genes of the cell wall stimulon in clinical isolates of Staphylococcus aureus exhibiting vancomycin-intermediate-S. aureus-type resistance to vancomycin. Journal of Bacteriology 188, 11201133.
McNicoll, F., Drummelsmith, J., Muller, M., Madore, E., Boilard, N., Ouellette, M. and Papadopoulou, B. (2006). A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 6, 35673581.
Monjour, L., Vouldoukis, I., Brandicourt, O., Mazier, D., Alfred, C., Ploton, I. and Gentilini, M. (1984). Rapid, large-scale production and isolation for Leishmania amastigotes. Annals of Tropical Medicine and Parasitology 78, 423425.
Mottram, J. C., Robertson, C. D., Coombs, G. H. and Barry, J. D. (1992). A developmentally regulated cysteine proteinase gene of Leishmania mexicana. Molecular Microbiology 6, 19251932.
Peacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A. and others (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature Genetics 39, 839847.
Pham, T. V. and Mauel, J. (1987). Studies on intracellular killing of Leishmania major and lysis of host macrophages by immune lymphoid cells in vitro. Parasite Immunology 9, 721736.
Rijal, S., Yardley, V., Chappuis, F., Decuypere, S., Khanal, B., Singh, R., Boelaert, M., De Doncker, S., Croft, S. and Dujardin, J. C. (2007). Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome? Microbes and Infection 9, 529535.
Sacks, D. L. (1989). Metacyclogenesis in Leishmania promastigotes. Experimental Parasitology 69, 100103.
Saxena, A., Lahav, T., Holland, N., Aggarwal, G., Anupama, A., Huang, Y., Volpin, H., Myler, P. J. and Zilberstein, D. (2007). Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Molecular and Biochemical Parasitology 152, 5365.
Saxena, A., Worthey, E. A., Yan, S., Leland, A., Stuart, K. D. and Myler, P. J. (2003). Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. Molecular and Biochemical Parasitology 129, 103114.
Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467470.
Shapira, M., McEwen, J. G. and Jaffe, C. L. (1988). Temperature effects on molecular processes which lead to stage differentiation in Leishmania. The EMBO Journal 7, 28952901.
Tintaya, K. W., Ying, X., Dedet, J. P., Rijal, S., De Bolle, X. and Dujardin, J. C. (2004). Antigen genes for molecular epidemiology of leishmaniasis: polymorphism of cysteine proteinase B and surface metalloprotease glycoprotein 63 in the Leishmania donovani complex. The Journal of Infectious Diseases 189, 10351043.
Tobie, E. J., Von Brand, T. and Mehlman, B. (1950). Cultural and physiological observations on Trypanosoma rhodesiense and Trypanosoma gambiense. Journal of Parasitology 36, 4854.
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, research 0034.10034.11.
Zakai, H. A., Chance, M. L. and Bates, P. A. (1998). In vitro stimulation of metacyclogenesis in Leishmania braziliensis, L. donovani, L. major and L. mexicana. Parasitology 116, 305309.


Gene expression profiling of Leishmania (Leishmania) donovani: overcoming technical variation and exploiting biological variation

  • S. DECUYPERE (a1) (a2), M. VANAERSCHOT (a1) (a3), S. RIJAL (a4), V. YARDLEY (a5), L. MAES (a6), S. DE DONCKER (a1), F. CHAPPUIS (a7) and J.-C. DUJARDIN (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed