Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T10:27:21.541Z Has data issue: false hasContentIssue false

Examining cellular immune responses to inform development of a blood-stage malaria vaccine

Published online by Cambridge University Press:  08 January 2016

DANIELLE I. STANISIC*
Affiliation:
Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia
MICHAEL F. GOOD*
Affiliation:
Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia
*
*Corresponding authors: Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia. E-mail: d.stanisic@griffith.edu.au, Michael.Good@griffith.edu.au
*Corresponding authors: Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia. E-mail: d.stanisic@griffith.edu.au, Michael.Good@griffith.edu.au

Summary

Naturally acquired immunity to the blood-stage of the malaria parasite develops slowly in areas of high endemicity, but is not sterilizing. It manifests as a reduction in parasite density and clinical symptoms. Immunity as a result of blood-stage vaccination has not yet been achieved in humans, although there are many animal models where vaccination has been successful. The development of a blood-stage vaccine has been complicated by a number of factors including limited knowledge of human-parasite interactions and which antigens and immune responses are critical for protection. Opinion is divided as to whether this vaccine should aim to accelerate the acquisition of responses acquired following natural exposure, or whether it should induce a different response. Animal and experimental human models suggest that cell-mediated immune responses can control parasite growth, but these responses can also contribute to significant immunopathology if unregulated. They are largely ignored in most blood-stage malaria vaccine development strategies. Here, we discuss key observations relating to cell-mediated immune responses in the context of experimental human systems and field studies involving naturally exposed individuals and how this may inform the development of a blood-stage malaria vaccine.

Type
Special Issue Review
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achtman, A. H., Bull, P. C., Stephens, R. and Langhorne, J. (2005). Longevity of the immune response and memory to blood-stage malaria infection. Current Topics in Microbiology and Immunology 297, 71102.Google ScholarPubMed
Amante, F. H. and Good, M. F. (1997). Prolonged Th1-like response generated by a Plasmodium yoelii-specific T cell clone allows complete clearance of infection in reconstituted mice. Parasite Immunology 19, 111126.CrossRefGoogle ScholarPubMed
Amante, F. H., Haque, A., Stanley, A. C., Rivera Fde, L., Randall, L. M., Wilson, Y. A., Yeo, G., Pieper, C., Crabb, B. S., de Koning-Ward, T. F., Lundie, R. J., Good, M. F., Pinzon-Charry, A., Pearson, M. S., Duke, M. G., McManus, D. P., Loukas, A., Hill, G. R. and Engwerda, C. R. (2010). Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. Journal of Immunology 185, 36323642.CrossRefGoogle ScholarPubMed
Anderson, C. F., Oukka, M., Kuchroo, V. J. and Sacks, D. (2007). CD4(+)CD25(-)Foxp3(−) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. The Journal of Experimental Medicine 204, 285297.CrossRefGoogle ScholarPubMed
Arama, C., Giusti, P., Bostrom, S., Dara, V., Traore, B., Dolo, A., Doumbo, O., Varani, S. and Troye-Blomberg, M. (2011). Interethnic differences in antigen-presenting cell activation and TLR responses in Malian children during Plasmodium falciparum malaria. Plos ONE 6, e18319.CrossRefGoogle ScholarPubMed
Arama, C., Maiga, B., Dolo, A., Kouriba, B., Traore, B., Crompton, P. D., Pierce, S. K., Troye-Blomberg, M., Miller, L. H. and Doumbo, O. K. (2015). Ethnic differences in susceptibility to malaria: what have we learned from immuno-epidemiological studies in West Africa? Acta Tropica 146, 152156.CrossRefGoogle ScholarPubMed
Artavanis-Tsakonas, K., Tongren, J. E. and Riley, E. M. (2003). The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clinical and Experimental Immunology 133, 145152.CrossRefGoogle ScholarPubMed
Awandare, G. A., Goka, B., Boeuf, P., Tetteh, J. K., Kurtzhals, J. A., Behr, C. and Akanmori, B. D. (2006). Increased levels of inflammatory mediators in children with severe Plasmodium falciparum malaria with respiratory distress. The Journal of Infectious Diseases 194, 14381446.CrossRefGoogle ScholarPubMed
Ayimba, E., Hegewald, J., Segbena, A. Y., Gantin, R. G., Lechner, C. J., Agosssou, A., Banla, M. and Soboslay, P. T. (2011). Proinflammatory and regulatory cytokines and chemokines in infants with uncomplicated and severe Plasmodium falciparum malaria. Clinical and Experimental Immunology 166, 218226.CrossRefGoogle ScholarPubMed
Barry, A. E., Schultz, L., Buckee, C. O. and Reeder, J. C. (2009). Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite, Plasmodium falciparum. Plos ONE 4, e8497.CrossRefGoogle ScholarPubMed
Bejon, P., Mwacharo, J., Kai, O., Todryk, S., Keating, S., Lowe, B., Lang, T., Mwangi, T. W., Gilbert, S. C., Peshu, N., Marsh, K. and Hill, A. V. (2007). The induction and persistence of T cell IFN-gamma responses after vaccination or natural exposure is suppressed by Plasmodium falciparum. Journal of Immunology 179, 41934201.CrossRefGoogle ScholarPubMed
Borges da Silva, H., Fonseca, R., Cassado Ados, A., Machado de Salles, E., de Menezes, M. N., Langhorne, J., Perez, K. R., Cuccovia, I. M., Ryffel, B., Barreto, V. M., Marinho, C. R., Boscardin, S. B., Alvarez, J. M., D'Imperio-Lima, M. R. and Tadokoro, C. E. (2015). In vivo approaches reveal a key role for DCs in CD4+ T cell activation and parasite clearance during the acute phase of experimental blood-stage malaria. PLoS Pathogens 11, e1004598.CrossRefGoogle ScholarPubMed
Bouchaud, O., Cot, M., Kony, S., Durand, R., Schiemann, R., Ralaimazava, P., Coulaud, J. P., Le Bras, J. and Deloron, P. (2005). Do African immigrants living in France have long-term malarial immunity? The American Journal of Tropical Medicine and Hygiene 72, 2125.CrossRefGoogle ScholarPubMed
Boyle, M. J., Jagannathan, P., Bowen, K., McIntyre, T. I., Vance, H. M., Farrington, L. A., Greenhouse, B., Nankya, F., Rek, J., Katureebe, A., Arinaitwe, E., Dorsey, G., Kamya, M. R. and Feeney, M. E. (2015 a). Effector phenotype of Plasmodium falciparum-specific CD4+ T cells is influenced by both age and transmission intensity in naturally exposed populations. The Journal of Infectious Diseases 212, 416425.CrossRefGoogle ScholarPubMed
Boyle, M. J., Reiling, L., Feng, G., Langer, C., Osier, F. H., Aspeling-Jones, H., Cheng, Y. S., Stubbs, J., Tetteh, K. K., Conway, D. J., McCarthy, J. S., Muller, I., Marsh, K., Anders, R. F. and Beeson, J. G. (2015 b). Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 42, 580590.CrossRefGoogle ScholarPubMed
Brake, D. A., Long, C. A. and Weidanz, W. P. (1988). Adoptive protection against Plasmodium chabaudi adami malaria in athymic nude mice by a cloned T cell line. Journal of Immunology 140, 19891993.CrossRefGoogle ScholarPubMed
Brasseur, P., Agrapart, M., Ballet, J. J., Druilhe, P., Warrell, M. J. and Tharavanij, S. (1983). Impaired cell-mediated immunity in Plasmodium falciparum-infected patients with high-parasitemia and cerebral malaria. Clinical Immunology and Immunopathology 27, 3850.CrossRefGoogle ScholarPubMed
Bueno, L. L., Morais, C. G., Araujo, F. F., Gomes, J. A., Correa-Oliveira, R., Soares, I. S., Lacerda, M. V., Fujiwara, R. T. and Braga, E. M. (2010). Plasmodium vivax: induction of CD4+CD25+FoxP3+ regulatory T cells during infection are directly associated with level of circulating parasites. Plos ONE 5, e9623.CrossRefGoogle ScholarPubMed
Butler, N. S., Moebius, J., Pewe, L. L., Traore, B., Doumbo, O. K., Tygrett, L. T., Waldschmidt, T. J., Crompton, P. D. and Harty, J. T. (2012). Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nature Immunology 13, 188195.CrossRefGoogle Scholar
Butler, N. S., Harris, T. H. and Blader, I. J. (2013). Regulation of immunopathogenesis during Plasmodium and Toxoplasma infections: more parallels than distinctions? Trends in Parasitology 29, 593602.CrossRefGoogle ScholarPubMed
Cambos, M., Belanger, B., Jacques, A., Roulet, A. and Scorza, T. (2008). Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion. International Journal of Parasitology 38, 229238.CrossRefGoogle Scholar
Cardoso, F. C., Roddick, J. S., Groves, P. and Doolan, D. L. (2011). Evaluation of approaches to identify the targets of cellular immunity on a proteome-wide scale. Plos ONE 6, e27666.CrossRefGoogle ScholarPubMed
Chattopadhyay, P. K., Hogerkorp, C. M. and Roederer, M. (2008). A chromatic explosion: the development and future of multiparameter flow cytometry. Immunology 125, 441449.CrossRefGoogle ScholarPubMed
Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. and Love, J. C. (2014). Single-cell technologies for monitoring immune systems. Nature Immunology 15, 128135.CrossRefGoogle ScholarPubMed
Chen, G., Liu, J., Wang, Q. H., Wu, Y., Feng, H., Zheng, W., Guo, S. Y., Li, D. M., Wang, J. C. and Cao, Y. M. (2009). Effects of CD4(+)CD25(+)Foxp3(+)regulatory T cells on early Plasmodium yoelii 17XL infection in BALB/c mice. Parasitology 136, 11071120.CrossRefGoogle ScholarPubMed
Chougnet, C., Tallet, S., Ringwald, P. and Deloron, P. (1992). Kinetics of lymphocyte subsets from peripheral blood during a Plasmodium falciparum malaria attack. Clinical and Experimental Immunology 90, 405408.CrossRefGoogle ScholarPubMed
Cohen, S., McGregor, I. and Carrington, S. (1961). Gamma-globulin and acquired immunity to human malaria. Nature 192, 733737.CrossRefGoogle ScholarPubMed
Costa, G., Loizon, S., Guenot, M., Mocan, I., Halary, F., de Saint-Basile, G., Pitard, V., Dechanet-Merville, J., Moreau, J. F., Troye-Blomberg, M., Mercereau-Puijalon, O. and Behr, C. (2011). Control of Plasmodium falciparum erythrocytic cycle: gammadelta T cells target the red blood cell-invasive merozoites. Blood 118, 69526962.CrossRefGoogle ScholarPubMed
Couper, K. N., Blount, D. G., Wilson, M. S., Hafalla, J. C., Belkaid, Y., Kamanaka, M., Flavell, R. A., de Souza, J. B. and Riley, E. M. (2008). IL-10 from CD4CD25Foxp3CD127 adaptive regulatory T cells modulates parasite clearance and pathology during malaria infection. PLoS Pathogens 4, e1000004.CrossRefGoogle ScholarPubMed
Currier, J., Sattabongkot, J. and Good, M. F. (1992). ‘Natural’ T cells responsive to malaria: evidence implicating immunological cross-reactivity in the maintenance of TCR alpha beta+ malaria-specific responses from non-exposed donors. International Immunology 4, 985994.CrossRefGoogle ScholarPubMed
D'Ombrain, M., Robinson, L., Stanisic, D., Taraika, J., Bernard, N., Michon, P., Mueller, I. and Schofield, L. (2008). Association of early interferon-gamma production with immunity to clinical malaria: a longitudinal study among Papua New Guinean children. Clinical Infectious Diseases 47, 13801387.CrossRefGoogle ScholarPubMed
Day, N. P., Hien, T. T., Schollaardt, T., Loc, P. P., Chuong, L. V., Chau, T. T., Mai, N. T., Phu, N. H., Sinh, D. X., White, N. J. and Ho, M. (1999). The prognostic and pathophysiologic role of pro- and anti-inflammatory cytokines in severe malaria. The Journal of Infectious Diseases 180, 12881297.CrossRefGoogle Scholar
Deloron, P. and Chougnet, C. (1992). Is immunity to malaria really short-lived? Parasitology Today 8, 375378.CrossRefGoogle ScholarPubMed
Dent, A. E., Chelimo, K., Sumba, P. O., Spring, M. D., Crabb, B. S., Moormann, A. M., Tisch, D. J. and Kazura, J. W. (2009). Temporal stability of naturally acquired immunity to merozoite surface protein-1 in Kenyan adults. Malaria Journal 8, 162.CrossRefGoogle ScholarPubMed
deWalick, S., Amante, F. H., McSweeney, K. A., Randall, L. M., Stanley, A. C., Haque, A., Kuns, R. D., MacDonald, K. P., Hill, G. R. and Engwerda, C. R. (2007). Cutting edge: conventional dendritic cells are the critical APC required for the induction of experimental cerebral malaria. Journal of Immunology 178, 60336037.CrossRefGoogle ScholarPubMed
Dodoo, D., Omer, F. M., Todd, J., Akanmori, B. D., Koram, K. A. and Riley, E. M. (2002). Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. The Journal of Infectious Diseases 185, 971979.CrossRefGoogle ScholarPubMed
Druilhe, P., Brasseur, P., Agrapart, M., Ballet, J. J., Chanthavanich, P., Looareesuwan, S., White, N., Warrell, M., Warrell, D., Tharavanij, S. and Gentilini, M. (1983). T-cell responsiveness in severe Plasmodium falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 671672.CrossRefGoogle ScholarPubMed
Edstein, M. D., Kotecka, B. M., Anderson, K. L., Pombo, D. J., Kyle, D. E., Rieckmann, K. H. and Good, M. F. (2005). Lengthy antimalarial activity of atovaquone in human plasma following atovaquone-proguanil administration. Antimicrobial Agents and Chemotherapy 49, 44214422.CrossRefGoogle ScholarPubMed
Elliott, S. R., Kuns, R. D. and Good, M. F. (2005). Heterologous immunity in the absence of variant-specific antibodies after exposure to sub-patent infection with blood-stage malaria. Infection and Immunity 73, 24782485.CrossRefGoogle Scholar
Elliott, S. R., Spurck, T. P., Dodin, J. M., Maier, A. G., Voss, T. S., Yosaatmadja, F., Payne, P. D., McFadden, G. I., Cowman, A. F., Rogerson, S. J., Schofield, L. and Brown, G. V. (2007). Inhibition of dendritic cell maturation by malaria is dose dependent and does not require Plasmodium falciparum erythrocyte membrane protein 1. Infection and Immunity 75, 36213632.CrossRefGoogle Scholar
Elloso, M. M., van der Heyde, H. C., vande Waa, J. A., Manning, D. D. and Weidanz, W. P. (1994). Inhibition of Plasmodium falciparum in vitro by human gamma delta T cells. Journal of Immunology 153, 11871194.CrossRefGoogle ScholarPubMed
Engwerda, C. R., Beattie, L. and Amante, F. H. (2005). The importance of the spleen in malaria. Trends in Parasitology 21, 7580.CrossRefGoogle ScholarPubMed
Engwerda, C. R., Minigo, G., Amante, F. H. and McCarthy, J. S. (2012). Experimentally induced blood stage malaria infection as a tool for clinical research. Trends in Parasitology 28, 515521.CrossRefGoogle ScholarPubMed
Fell, A., Currier, J. and Good, M. (1994). Inhibition of Plasmodium falciparum growth in vitro by CD4+ and CD8+ T cells from non-exposed donors. Parasite Immunology 16, 579586.CrossRefGoogle ScholarPubMed
Finney, O. C., Nwakanma, D., Conway, D. J., Walther, M. and Riley, E. M. (2009). Homeostatic regulation of T effector to Treg ratios in an area of seasonal malaria transmission. European Journal of Immunology 39, 12881300.CrossRefGoogle Scholar
Finney, O. C., Riley, E. M. and Walther, M. (2010). Regulatory T cells in malaria – friend or foe? Trends in Immunology 31, 6370.CrossRefGoogle ScholarPubMed
Flanagan, K. L., Mwangi, T., Plebanski, M., Odhiambo, K., Ross, A., Sheu, E., Kortok, M., Lowe, B., Marsh, K. and Hill, A. V. (2003). Ex vivo interferon-gamma immune response to thrombospondin-related adhesive protein in coastal Kenyans: longevity and risk of Plasmodium falciparum infection. The American Journal of Tropical Medicine and Hygiene 68, 421430.CrossRefGoogle ScholarPubMed
Freitas do Rosario, A. P. and Langhorne, J. (2012). T cell-derived IL-10 and its impact on the regulation of host responses during malaria. International Journal of Parasitology 42, 549555.CrossRefGoogle ScholarPubMed
Giusti, P., Urban, B. C., Frascaroli, G., Albrecht, L., Tinti, A., Troye-Blomberg, M. and Varani, S. (2011). Plasmodium falciparum-infected erythrocytes and beta-hematin induce partial maturation of human dendritic cells and increase their migratory ability in response to lymphoid chemokines. Infection and Immunity 79, 27272736.CrossRefGoogle ScholarPubMed
Goncalves, R. M., Salmazi, K. C., Santos, B. A., Bastos, M. S., Rocha, S. C., Boscardin, S. B., Silber, A. M., Kallas, E. G., Ferreira, M. U. and Scopel, K. K. (2010). CD4+ CD25+ Foxp3+ regulatory T cells, dendritic cells, and circulating cytokines in uncomplicated malaria: do different parasite species elicit similar host responses? Infection and Immunity 78, 47634772.CrossRefGoogle ScholarPubMed
Good, M. F., Reiman, J. M., Rodriguez, I. B., Ito, K., Yanow, S. K., El-Deeb, I. M., Batzloff, M. R., Stanisic, D. I., Engwerda, C., Spithill, T., Hoffman, S. L., Lee, M. and McPhun, V. (2013). Cross-species malaria immunity induced by chemically attenuated parasites. The Journal of Clinical Investigation 123, 33533362.CrossRefGoogle ScholarPubMed
Grau, G. E., Taylor, T. E., Molyneux, M. E., Wirima, J. J., Vassalli, P., Hommel, M. and Lambert, P. H. (1989). Tumor necrosis factor and disease severity in children with falciparum malaria. The New England Journal of Medicine 320, 15861591.CrossRefGoogle ScholarPubMed
Grun, J. L. and Weidanz, W. P. (1983). Antibody-independent immunity to re-infection malaria in B-cell-deficient mice. Infection and Immunity 41, 11971204.CrossRefGoogle ScholarPubMed
Hansen, D. S. and Schofield, L. (2010). Natural regulatory T cells in malaria: host or parasite allies? PLoS Pathogens 6, e1000771.CrossRefGoogle ScholarPubMed
Hirunpetcharat, C. and Good, M. F. (1998). Deletion of Plasmodium berghei-specific CD4+ T cells adoptively transferred into recipient mice after challenge with homologous parasite. Proceedings of the National Academy of Sciences of the United States of America 95, 17151720.CrossRefGoogle ScholarPubMed
Hirunpetcharat, C., Finkelman, F., Clark, I. A. and Good, M. F. (1999). Malaria parasite-specific Th1-like T cells simultaneously reduce parasitemia and promote disease. Parasite Immunology 21, 319329.CrossRefGoogle ScholarPubMed
Ho, M., Webster, H. K., Green, B., Looareesuwan, S., Kongchareon, S. and White, N. J. (1988). Defective production of and response to IL-2 in acute human falciparum malaria. Journal of Immunology 141, 27552759.CrossRefGoogle ScholarPubMed
Ho, M., Webster, H. K., Tongtawe, P., Pattanapanyasat, K. and Weidanz, W. P. (1990). Increased gamma delta T cells in acute Plasmodium falciparum malaria. Immunology Letters 25, 139141.CrossRefGoogle ScholarPubMed
Hojo-Souza, N. S., Pereira, D. B., Passos, L. S., Gazzinelli-Guimaraes, P. H., Cardoso, M. S., Tada, M. S., Zanini, G. M., Bartholomeu, D. C., Fujiwara, R. T. and Bueno, L. L. (2015). Phenotypic profiling of CD8(+) T cells during Plasmodium vivax blood-stage infection. BMC Infectious Diseases 15, 35.CrossRefGoogle ScholarPubMed
Horne-Debets, J. M., Faleiro, R., Karunarathne, D. S., Liu, X. Q., Lineburg, K. E., Poh, C. M., Grotenbreg, G. M., Hill, G. R., MacDonald, K. P., Good, M. F., Renia, L., Ahmed, R., Sharpe, A. H. and Wykes, M. N. (2013). PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria. Cell Reports 5, 12041213.CrossRefGoogle ScholarPubMed
Hugosson, E., Montgomery, S. M., Premji, Z., Troye-Blomberg, M. and Bjorkman, A. (2004). Higher IL-10 levels are associated with less effective clearance of Plasmodium falciparum parasites. Parasite Immunology 26, 111117.CrossRefGoogle ScholarPubMed
Hviid, L., Kurtzhals, J. A., Dodoo, D., Rodrigues, O., Ronn, A., Commey, J. O., Nkrumah, F. K. and Theander, T. G. (1996). The gamma/delta T-cell response to Plasmodium falciparum malaria in a population in which malaria is endemic. Infection and Immunity 64, 43594362.CrossRefGoogle Scholar
Hviid, L., Kurtzhals, J., Goka, B., Oliver-Commey, J., Nkrumah, F. and Theander, T. (1997). Rapid re-emergence of T cells into peripheral circulation following treatment of severe and uncomplicated Plasmodium falciparum malaria. Infection and Immunity 65, 40904093.CrossRefGoogle Scholar
Illingworth, J., Butler, N. S., Roetynck, S., Mwacharo, J., Pierce, S. K., Bejon, P., Crompton, P. D., Marsh, K. and Ndungu, F. M. (2013). Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. Journal of Immunology 190, 10381047.CrossRefGoogle ScholarPubMed
Imai, T., Shen, J., Chou, B., Duan, X., Tu, L., Tetsutani, K., Moriya, C., Ishida, H., Hamano, S., Shimokawa, C., Hisaeda, H. and Himeno, K. (2010). Involvement of CD8+ T cells in protective immunity against murine blood-stage infection with Plasmodium yoelii 17XL strain. European Journal of Immunology 40, 10531061.CrossRefGoogle ScholarPubMed
Imai, T., Ishida, H., Suzue, K., Taniguchi, T., Okada, H., Shimokawa, C. and Hisaeda, H. (2015). Cytotoxic activities of CD8(+) T cells collaborate with macrophages to protect against blood-stage murine malaria. Elife 4, e04232.CrossRefGoogle ScholarPubMed
Inoue, S., Niikura, M., Takeo, S., Mineo, S., Kawakami, Y., Uchida, A., Kamiya, S. and Kobayashi, F. (2012). Enhancement of dendritic cell activation via CD40 ligand-expressing gammadelta T cells is responsible for protective immunity to Plasmodium parasites. Proceedings of the National Academy of Sciences of the United States of America 109, 1212912134.CrossRefGoogle ScholarPubMed
Inoue, S., Niikura, M., Mineo, S. and Kobayashi, F. (2013). Roles of IFN-gamma and gammadelta T cells in protective immunity against blood-stage malaria. Front Immunology 4, 258.CrossRefGoogle ScholarPubMed
Jagannathan, P., Eccles-James, I., Bowen, K., Nankya, F., Auma, A., Wamala, S., Ebusu, C., Muhindo, M. K., Arinaitwe, E., Briggs, J., Greenhouse, B., Tappero, J. W., Kamya, M. R., Dorsey, G. and Feeney, M. E. (2014 a). IFNgamma/IL-10 co-producing cells dominate the CD4 response to malaria in highly exposed children. PLoS Pathogens 10, e1003864.CrossRefGoogle ScholarPubMed
Jagannathan, P., Kim, C. C., Greenhouse, B., Nankya, F., Bowen, K., Eccles-James, I., Muhindo, M. K., Arinaitwe, E., Tappero, J. W., Kamya, M. R., Dorsey, G. and Feeney, M. E. (2014 b). Loss and dysfunction of Vdelta2(+) gammadelta T cells are associated with clinical tolerance to malaria. Science Translational Medicine 6, 251ra117.CrossRefGoogle ScholarPubMed
Jangpatarapongsa, K., Chootong, P., Sattabongkot, J., Chotivanich, K., Sirichaisinthop, J., Tungpradabkul, S., Hisaeda, H., Troye-Blomberg, M., Cui, L. and Udomsangpetch, R. (2008). Plasmodium vivax parasites alter the balance of myeloid and plasmacytoid dendritic cells and the induction of regulatory T cells. European Journal of Immunology 38, 26972705.CrossRefGoogle ScholarPubMed
Jankovic, D., Kullberg, M. C., Feng, C. G., Goldszmid, R. S., Collazo, C. M., Wilson, M., Wynn, T. A., Kamanaka, M., Flavell, R. A. and Sher, A. (2007). Conventional T-bet(+)Foxp3(−) Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. The Journal of Experimental Medicine 204, 273283.CrossRefGoogle ScholarPubMed
Jason, J., Archibald, L. K., Nwanyanwu, O. C., Byrd, M. G., Kazembe, P. N., Dobbie, H. and Jarvis, W. R. (2001). Comparison of serum and cell-specific cytokines in humans. Clinical and Diagnostic Laboratory Immunology 8, 10971103.CrossRefGoogle ScholarPubMed
Jones, K. R., Hickling, J. K., Targett, G. A. and Playfair, J. H. (1990). Polyclonal in vitro proliferative responses from non-immune donors to Plasmodium falciparum malaria antigens require UCHL1+ (memory) T cells. European Journal of Immunology 20, 307315.CrossRefGoogle Scholar
Joss, A., Akdis, M., Faith, A., Blaser, K. and Akdis, C. A. (2000). IL-10 directly acts on T cells by specifically altering the CD28 co-stimulation pathway. European Journal of Immunology 30, 16831690.3.0.CO;2-A>CrossRefGoogle Scholar
Kemp, K., Akanmori, B. D., Adabayeri, V., Goka, B. Q., Kurtzhals, J. A., Behr, C. and Hviid, L. (2002 a). Cytokine production and apoptosis among T cells from patients under treatment for Plasmodium falciparum malaria. Clinical and Experimental Immunology 127, 151157.CrossRefGoogle ScholarPubMed
Kemp, K., Akanmori, B. D., Kurtzhals, J. A., Adabayeri, V., Goka, B. Q. and Hviid, L. (2002 b). Acute P. falciparum malaria induces a loss of CD28- T IFN-gamma producing cells. Parasite Immunology 24, 545548.CrossRefGoogle ScholarPubMed
Kern, P., Hemmer, C. J., Van Damme, J., Gruss, H. J. and Dietrich, M. (1989). Elevated tumor necrosis factor alpha and interleukin-6 serum levels as markers for complicated Plasmodium falciparum malaria. The American Journal of Medicine 87, 139143.CrossRefGoogle ScholarPubMed
Korbel, D. S., Finney, O. C. and Riley, E. M. (2004). Natural killer cells and innate immunity to protozoan pathogens. International Journal of Parasitology 34, 15171528.CrossRefGoogle ScholarPubMed
Kremsner, P. G., Zotter, G. M., Feldmeier, H., Graninger, W., Rocha, R. M., Jansen-Rosseck, R. and Bienzle, U. (1990). Immune response in patients during and after Plasmodium falciparum infection. The Journal of Infectious Diseases 161, 10251028.CrossRefGoogle ScholarPubMed
Kremsner, P. G., Winkler, S., Brandts, C., Wildling, E., Jenne, L., Graninger, W., Prada, J., Bienzle, U., Juillard, P. and Grau, G. E. (1995). Prediction of accelerated cure in Plasmodium falciparum malaria by the elevated capacity of tumor necrosis factor production. The American Journal of Tropical Medicine and Hygiene 53, 532538.CrossRefGoogle ScholarPubMed
Kurtzhals, J. A., Adabayeri, V., Goka, B. Q., Akanmori, B. D., Oliver-Commey, J. O., Nkrumah, F. K., Behr, C. and Hviid, L. (1998). Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 351, 17681772.CrossRefGoogle ScholarPubMed
Lamb, T. J., Brown, D. E., Potocnik, A. J. and Langhorne, J. (2006). Insights into the immunopathogenesis of malaria using mouse models. Expert Reviews in Molecular Medicine 8, 122.CrossRefGoogle ScholarPubMed
Langhorne, J., Gillard, S., Simon, B., Slade, S. and Eichmann, K. (1989). Frequencies of CD4+ T cells reactive with Plasmodium chabaudi chabaudi: distinct response kinetics for cells with Th1 and Th2 characteristics during infection. International Immunology 1, 416424.CrossRefGoogle ScholarPubMed
Le Hesran, J. Y., Fievet, N., Thioulouse, J., Personne, P., Maubert, B., M'Bidias, S., Etye'ale, D., Cot, M. and Deloron, P. (2006). Development of cellular immune responses to Plasmodium falciparum blood stage antigens from birth to 36 months of age in Cameroon. Acta Tropica 98, 261269.CrossRefGoogle ScholarPubMed
Lundie, R. J., de Koning-Ward, T. F., Davey, G. M., Nie, C. Q., Hansen, D. S., Lau, L. S., Mintern, J. D., Belz, G. T., Schofield, L., Carbone, F. R., Villadangos, J. A., Crabb, B. S. and Heath, W. R. (2008). Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha+ dendritic cells. Proceedings of the National Academy of Sciences of the United States of America 105, 1450914514.CrossRefGoogle ScholarPubMed
Luty, A. J., Lell, B., Schmidt-Ott, R., Lehman, L. G., Luckner, D., Greve, B., Matousek, P., Herbich, K., Schmid, D., Migot-Nabias, F., Deloron, P., Nussenzweig, R. S. and Kremsner, P. G. (1999). Interferon-gamma responses are associated with resistance to reinfection with Plasmodium falciparum in young African children. The Journal of Infectious Diseases 179, 980988.CrossRefGoogle ScholarPubMed
Macete, E., Aide, P., Aponte, J., Sanz, S., Mandomando, I., Espasa, M., Sigauque, B., Dobano, C., Mabunda, S., DgeDge, M., Alonso, P. and Menendez, C. (2006). Intermittent preventive treatment for malaria control administered at the time of routine vaccinations in Mozambican infants: a randomized, placebo-controlled trial. The Journal of Infectious Diseases 194, 276285.CrossRefGoogle ScholarPubMed
Makobongo, M. O., Riding, G., Xu, H., Hirunpetcharat, C., Keough, D., de Jersey, J., Willadsen, P. and Good, M. F. (2003). The purine salvage enzyme hypoxanthine guanine xanthine phosphoribosyl transferase is a major target antigen for cell-mediated immunity to malaria. Proceedings of the National Academy of Sciences of the United State of America 100, 26282633.CrossRefGoogle Scholar
Maynard, C. L. and Weaver, C. T. (2008). Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunology Review 226, 219233.CrossRefGoogle ScholarPubMed
McCall, M. B. and Sauerwein, R. W. (2010). Interferon-gamma – central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. Journal of Leukocyte Biology 88, 11311143.CrossRefGoogle ScholarPubMed
McCall, M. B., Hopman, J., Daou, M., Maiga, B., Dara, V., Ploemen, I., Nganou-Makamdop, K., Niangaly, A., Tolo, Y., Arama, C., Bousema, J. T., van der Meer, J. W., van der Ven, A. J., Troye-Blomberg, M., Dolo, A., Doumbo, O. K. and Sauerwein, R. W. (2010). Early interferon-gamma response against Plasmodium falciparum correlates with interethnic differences in susceptibility to parasitemia between sympatric Fulani and Dogon in Mali. The Journal of Infectious Diseases 201, 142152.CrossRefGoogle ScholarPubMed
McCarthy, J. S., Sekuloski, S., Griffin, P. M., Elliott, S., Douglas, N., Peatey, C., Rockett, R., O'Rourke, P., Marquart, L., Hermsen, C., Duparc, S., Mohrle, J., Trenholme, K. R. and Humberstone, A. J. (2011). A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs. Plos ONE 6, e21914.CrossRefGoogle ScholarPubMed
Migot, F., Chougnet, C., Raharimalala, L., Astagneau, P., Lepers, J. P. and Deloron, P. (1993). Human immune responses to the Plasmodium falciparum ring-infected erythrocyte surface antigen (Pf155/RESA) after a decrease in malaria transmission in Madagascar. The American Journal of Tropical Medicine and Hygiene 48, 432439.CrossRefGoogle Scholar
Minigo, G., Woodberry, T., Piera, K. A., Salwati, E., Tjitra, E., Kenangalem, E., Price, R. N., Engwerda, C. R., Anstey, N. M. and Plebanski, M. (2009). Parasite-dependent expansion of TNF receptor II-positive regulatory T cells with enhanced suppressive activity in adults with severe malaria. PLoS Pathogens 5, e1000402.CrossRefGoogle ScholarPubMed
Moore, A. C., Gallimore, A., Draper, S. J., Watkins, K. R., Gilbert, S. C. and Hill, A. V. (2005). Anti-CD25 antibody enhancement of vaccine-induced immunogenicity: increased durable cellular immunity with reduced immunodominance. Journal of Immunology 175, 72647273.CrossRefGoogle ScholarPubMed
Moore, K. W., de Waal Malefyt, R., Coffman, R. L. and O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology 19, 683765.CrossRefGoogle ScholarPubMed
Moormann, A. M., Sumba, P. O., Tisch, D. J., Embury, P., King, C. H., Kazura, J. W. and John, C. C. (2009). Stability of interferon-gamma and interleukin-10 responses to Plasmodium falciparum liver stage antigen 1 and thrombospondin-related adhesive protein immunodominant epitopes in a highland population from Western Kenya. The American Journal of Tropical Medicine and Hygiene 81, 489495.CrossRefGoogle Scholar
Mordmuller, B. G., Metzger, W. G., Juillard, P., Brinkman, B. M., Verweij, C. L., Grau, G. E. and Kremsner, P. G. (1997). Tumor necrosis factor in Plasmodium falciparum malaria: high plasma level is associated with fever, but high production capacity is associated with rapid fever clearance. European Cytokine Network 8, 2935.Google ScholarPubMed
Morita, C. T., Beckman, E. M., Bukowski, J. F., Tanaka, Y., Band, H., Bloom, B. R., Golan, D. E. and Brenner, M. B. (1995). Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gammadelta T cells. Immunity 3, 495507.CrossRefGoogle Scholar
Mosmann, T. R. and Coffman, R. L. (1989). TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annual Review of Immunology 7, 145173.CrossRefGoogle ScholarPubMed
Mshana, R. N., Boulandi, J., Mshana, N. M., Mayombo, J. and Mendome, G. (1991). Cytokines in the pathogenesis of malaria: levels of IL-I beta, IL-4, IL-6, TNF-alpha and IFN-gamma in plasma of healthy individuals and malaria patients in a holoendemic area. Journal of Clinical and Laboratory Immunology 34, 131139.Google Scholar
Mshana, R. N., Boulandi, J., Mayombo, J. and Mendome, G. (1993). In vitro lymphoproliferative responses to malaria antigens: a prospective study of residents of a holoendemic area with perennial malaria transmission. Parasite Immunology 15, 3545.CrossRefGoogle ScholarPubMed
Nepom, G. T. (2012). MHC class II tetramers. Journal of Immunology 188, 24772482.CrossRefGoogle ScholarPubMed
Ockenhouse, C., Schulman, S. and Shear, H. (1984). Induction of crisis forms in the human malaria parasite Plasmodium falciparum by gamma-interferon-activated, monocyte-derived macrophages. Journal of Immunology 133, 16011608.CrossRefGoogle ScholarPubMed
Ogutu, B. R., Apollo, O. J., McKinney, D., Okoth, W., Siangla, J., Dubovsky, F., Tucker, K., Waitumbi, J. N., Diggs, C., Wittes, J., Malkin, E., Leach, A., Soisson, L. A., Milman, J. B., Otieno, L., Holland, C. A., Polhemus, M., Remich, S. A., Ockenhouse, C. F., Cohen, J., Ballou, W. R., Martin, S. K., Angov, E., Stewart, V. A., Lyon, J. A., Heppner, D. G. and Withers, M. R. (2009). Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. Plos ONE 4, e4708.CrossRefGoogle ScholarPubMed
Othoro, C., Lal, A. A., Nahlen, B., Koech, D., Orago, A. S. and Udhayakumar, V. (1999). A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. The Journal of Infectious Diseases 179, 279282.CrossRefGoogle Scholar
Otoo, L. N., Riley, E. M., Menon, A., Byass, P. and Greenwood, B. M. (1989). Cellular immune responses to Plasmodium falciparum antigens in children receiving long term anti-malarial chemoprophylaxis. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 778782.CrossRefGoogle ScholarPubMed
Perez-Mazliah, D. and Langhorne, J. (2014). CD4T-cell subsets in malaria: TH1/TH2 revisited. Front Immunology 5, 671.Google Scholar
Perfetto, S. P., Chattopadhyay, P. K. and Roederer, M. (2004). Seventeen-colour flow cytometry: unravelling the immune system. Nature Reviews Immunology 4, 648655.CrossRefGoogle ScholarPubMed
Perry, J. A., Olver, C. S., Burnett, R. C. and Avery, A. C. (2005). Cutting edge: the acquisition of TLR tolerance during malaria infection impacts T cell activation. Journal of Immunology 174, 59215925.CrossRefGoogle ScholarPubMed
Peyron, F., Vuillez, J. P., Barbe, G., Boudin, C., Picot, S. and Ambroise-Thomas, P. (1990). Plasma levels of tumor necrosis factor during a longitudinal survey in an endemic area of malaria. Acta Tropica 47, 4751.CrossRefGoogle Scholar
Pichyangkul, S., Yongvanitchit, K., Kum-arb, U., Hemmi, H., Akira, S., Krieg, A. M., Heppner, D. G., Stewart, V. A., Hasegawa, H., Looareesuwan, S., Shanks, G. D. and Miller, R. S. (2004). Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. Journal of Immunology 172, 49264933.CrossRefGoogle ScholarPubMed
Pinzon-Charry, A., McPhun, V., Kienzle, V., Hirunpetcharat, C., Engwerda, C., McCarthy, J. and Good, M. F. (2010). Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice. The Journal of Clinical Investigation 120, 29672978.CrossRefGoogle ScholarPubMed
Pinzon-Charry, A., Woodberry, T., Kienzle, V., McPhun, V., Minigo, G., Lampah, D. A., Kenangalem, E., Engwerda, C., Lopez, J. A., Anstey, N. M. and Good, M. F. (2013). Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria. The Journal of Experimental Medicine 210, 16351646.CrossRefGoogle ScholarPubMed
Pombo, D. J., Lawrence, G., Hirunpetcharat, C., Rzepczyk, C., Bryden, M., Cloonan, N., Anderson, K., Mahakunkijcharoen, Y., Martin, L. B., Wilson, D., Elliott, S., Eisen, D. P., Weinberg, J. B., Saul, A. and Good, M. F. (2002). Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360, 610617.CrossRefGoogle ScholarPubMed
Portugal, S., Moebius, J., Skinner, J., Doumbo, S., Doumtabe, D., Kone, Y., Dia, S., Kanakabandi, K., Sturdevant, D. E., Virtaneva, K., Porcella, S. F., Li, S., Doumbo, O. K., Kayentao, K., Ongoiba, A., Traore, B. and Crompton, P. D. (2014). Exposure-dependent control of malaria-induced inflammation in children. PLoS Pathogens 10, e1004079.CrossRefGoogle ScholarPubMed
Quelhas, D., Puyol, L., Quinto, L., Nhampossa, T., Serra-Casas, E., Macete, E., Aide, P., Sanz, S., Aponte, J. J., Doolan, D. L., Alonso, P. L., Menendez, C. and Dobano, C. (2012). Intermittent preventive treatment with sulfadoxine-pyrimethamine does not modify plasma cytokines and chemokines or intracellular cytokine responses to Plasmodium falciparum in Mozambican children. BMC Immunology 13, 5.CrossRefGoogle ScholarPubMed
Ramharter, M., Winkler, H., Kremsner, P. G., Adegnika, A. A., Willheim, M. and Winkler, S. (2005). Age-dependency of Plasmodium falciparum-specific and non-specific T cell cytokine responses in individuals from a malaria-endemic area. European Cytokine Network 16, 135143.Google ScholarPubMed
Riley, E. M., Jepsen, S., Andersson, G., Otoo, L. N. and Greenwood, B. M. (1988). Cell-mediated immune responses to Plasmodium falciparum antigens in adult Gambians. Clinical and Experimental Immunology 71, 377382.Google ScholarPubMed
Riley, E. M., Morris-Jones, S., Blackman, M. J., Greenwood, B. M. and Holder, A. A. (1993). A longitudinal study of naturally acquired cellular and humoral immune responses to a merozoite surface protein (MSP1) of Plasmodium falciparum in an area of seasonal malaria transmission. Parasite Immunology 15, 513524.CrossRefGoogle Scholar
Robinson, L., D'Ombrain, M., Stanisic, D., Taraika, J., Bernard, N., Richards, J., Beeson, J., Tavul, L., Michon, P., Mueller, I. and Schofield, L. (2009). Cellular tumour necrosis factor, gamma interferon, and interleukin-6 responses as correlates of immunity and risk of clinical Plasmodium falciparum malaria in children from Papua New Guinea. Infection and Immunity 77, 30333043.CrossRefGoogle ScholarPubMed
Rockett, K. A., Awburn, M. M., Cowden, W. B. and Clark, I. A. (1991). Killing of Plasmodium falciparum in vitro by nitric oxide derivatives. Infection and Immunity 59, 32803283.CrossRefGoogle ScholarPubMed
Rockett, K. A., Awburn, M. M., Aggarwal, B. B., Cowden, W. B. and Clark, I. A. (1992). In vivo induction of nitrite and nitrate by tumor necrosis factor, lymphotoxin, and interleukin-1: possible roles in malaria. Infection and Immunity 60, 37253730.CrossRefGoogle ScholarPubMed
Roestenberg, M., McCall, M., Hopman, J., Wiersma, J., Luty, A. J., van Gemert, G. J., van de Vegte-Bolmer, M., van Schaijk, B., Teelen, K., Arens, T., Spaarman, L., de Mast, Q., Roeffen, W., Snounou, G., Renia, L., van der Ven, A., Hermsen, C. C. and Sauerwein, R. (2009). Protection against a malaria challenge by sporozoite inoculation. The New England Journal of Medicine 361, 468477.CrossRefGoogle ScholarPubMed
Roestenberg, M., Teirlinck, A. C., McCall, M. B., Teelen, K., Makamdop, K. N., Wiersma, J., Arens, T., Beckers, P., van Gemert, G., van de Vegte-Bolmer, M., van der Ven, A. J., Luty, A. J., Hermsen, C. C. and Sauerwein, R. W. (2011). Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 377, 17701776.CrossRefGoogle ScholarPubMed
Roetynck, S., Olotu, A., Simam, J., Marsh, K., Stockinger, B., Urban, B. and Langhorne, J. (2013). Phenotypic and functional profiling of CD4T cell compartment in distinct populations of healthy adults with different antigenic exposure. Plos ONE 8, e55195.CrossRefGoogle Scholar
Roussilhon, C., Agrapart, M., Ballet, J. J. and Bensussan, A. (1990). T lymphocytes bearing the gamma delta T cell receptor in patients with acute Plasmodium falciparum malaria. The Journal of Infectious Diseases 162, 283285.CrossRefGoogle ScholarPubMed
Sabchareon, A., Burnouf, T., Ouattara, D., Attanath, P., Bouharoun-Tayoun, H., Chantavanich, P., Foucault, C., Chongsuphajaisiddhi, T. and Druilhe, P. (1991). Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. The American Journal of Tropical Medicine and Hygiene 45, 297308.CrossRefGoogle ScholarPubMed
Safeukui, I., Gomez, N. D., Adelani, A. A., Burte, F., Afolabi, N. K., Akondy, R., Velazquez, P., Holder, A., Tewari, R., Buffet, P., Brown, B. J., Shokunbi, W. A., Olaleye, D., Sodeinde, O., Kazura, J., Ahmed, R., Mohandas, N., Fernandez-Reyes, D. and Haldar, K. (2015). Malaria induces anemia through CD8+ T cell-dependent parasite clearance and erythrocyte removal in the spleen. MBio 6, e02493-14.CrossRefGoogle ScholarPubMed
Sagara, I., Dicko, A., Ellis, R. D., Fay, M. P., Diawara, S. I., Assadou, M. H., Sissoko, M. S., Kone, M., Diallo, A. I., Saye, R., Guindo, M. A., Kante, O., Niambele, M. B., Miura, K., Mullen, G. E., Pierce, M., Martin, L. B., Dolo, A., Diallo, D. A., Doumbo, O. K., Miller, L. H. and Saul, A. (2009). A randomized controlled phase 2 trial of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali. Vaccine 27, 30903098.CrossRefGoogle ScholarPubMed
Scholzen, A., Mittag, D., Rogerson, S. J., Cooke, B. M. and Plebanski, M. (2009). Plasmodium falciparum-mediated induction of human CD25Foxp3 CD4T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFbeta. PLoS Pathogens 5, e1000543.CrossRefGoogle Scholar
Scholzen, A., Minigo, G. and Plebanski, M. (2010). Heroes or villains? T regulatory cells in malaria infection. Trends in Parasitology 26, 1625.CrossRefGoogle ScholarPubMed
Schwenk, R., Banania, G., Epstein, J., Kim, Y., Peters, B., Belmonte, M., Ganeshan, H., Huang, J., Reyes, S., Stryhn, A., Ockenhouse, C. F., Buus, S., Richie, T. L. and Sedegah, M. (2013). Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1. Malaria Journal 12, 376.CrossRefGoogle ScholarPubMed
Seder, R. A., Darrah, P. A. and Roederer, M. (2008). T-cell quality in memory and protection: implications for vaccine design. Nature Reviews Immunology 8, 247258.CrossRefGoogle ScholarPubMed
Seixas, E. M. and Langhorne, J. (1999). gammadelta T cells contribute to control of chronic parasitemia in Plasmodium chabaudi infections in mice. Journal of Immunology 162, 28372841.CrossRefGoogle ScholarPubMed
Snounou, G., Gruner, A. C., Muller-Graf, C. D., Mazier, D. and Renia, L. (2005). The Plasmodium sporozoite survives RTS,S vaccination. Trends in Parasitology 21, 456–61.CrossRefGoogle ScholarPubMed
Stanisic, D. I., Barry, A. E. and Good, M. F. (2013). Escaping the immune system: how the malaria parasite makes vaccine development a challenge. Trends in Parasitology 29, 612622.CrossRefGoogle ScholarPubMed
Stanisic, D. I., Cutts, J., Eriksson, E., Fowkes, F. J., Rosanas-Urgell, A., Siba, P., Laman, M., Davis, T. M., Manning, L., Mueller, I. and Schofield, L. (2014). Gammadelta T cells and CD14+ monocytes are predominant cellular sources of cytokines and chemokines associated with severe malaria. The Journal of Infectious Diseases 210, 295305.CrossRefGoogle ScholarPubMed
Stevenson, M. and Urban, B. (2006). Antigen presentation and dendritic cell biology in malaria. Parasite Immunology 28, 514.CrossRefGoogle ScholarPubMed
Stevenson, M. M. and Riley, E. M. (2004). Innate immunity to malaria. Nature Reviews Immunology 4, 169180.CrossRefGoogle ScholarPubMed
Stevenson, M. M., Ing, R., Berretta, F. and Miu, J. (2011). Regulating the adaptive immune response to blood-stage malaria: role of dendritic cells and CD4(+)Foxp3(+) regulatory T cells. International Journal of Biological Sciences 7, 13111322.CrossRefGoogle ScholarPubMed
Su, Z. and Stevenson, M. M. (2000). Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infection and Immunity 68, 43994406.CrossRefGoogle ScholarPubMed
Su, Z., Fortin, A., Gros, P. and Stevenson, M. M. (2002). Opsonin-independent phagocytosis: an effector mechanism against acute blood-stage Plasmodium chabaudi AS infection. The Journal of Infectious Diseases 186, 13211329.CrossRefGoogle ScholarPubMed
Sutherland, C. J., Drakeley, C. J. and Schellenberg, D. (2007). How is childhood development of immunity to Plasmodium falciparum enhanced by certain antimalarial interventions? Malaria Journal 6, 161.CrossRefGoogle Scholar
Tang, Q. and Bluestone, J. A. (2008). The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nature Immunology 9, 239244.CrossRefGoogle Scholar
Taverne, J., Tavernier, J., Fiers, W. and Playfair, J. H. (1987). Recombinant tumour necrosis factor inhibits malaria parasites in vivo, but not in vitro. Clinical and Experimental Immunology 67, 14.Google Scholar
Teirlinck, A. C., McCall, M. B., Roestenberg, M., Scholzen, A., Woestenenk, R., de Mast, Q., van der Ven, A. J., Hermsen, C. C., Luty, A. J. and Sauerwein, R. W. (2011). Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans. PLoS Pathogens 7, e1002389.CrossRefGoogle ScholarPubMed
Thuma, P. E., van Dijk, J., Bucala, R., Debebe, Z., Nekhai, S., Kuddo, T., Nouraie, M., Weiss, G. and Gordeuk, V. R. (2011). Distinct clinical and immunologic profiles in severe malarial anemia and cerebral malaria in Zambia. The Journal of Infectious Diseases 203, 211219.CrossRefGoogle ScholarPubMed
Todryk, S. M., Pathan, A. A., Keating, S., Porter, D. W., Berthoud, T., Thompson, F., Klenerman, P. and Hill, A. V. (2009 a). The relationship between human effector and memory T cells measured by ex vivo and cultured ELISPOT following recent and distal priming. Immunology 128, 8391.CrossRefGoogle ScholarPubMed
Todryk, S. M., Walther, M., Bejon, P., Hutchings, C., Thompson, F. M., Urban, B. C., Porter, D. W. and Hill, A. V. (2009 b). Multiple functions of human T cells generated by experimental malaria challenge. European Journal of Immunology 39, 30423051.CrossRefGoogle Scholar
Torcia, M. G., Santarlasci, V., Cosmi, L., Clemente, A., Maggi, L., Mangano, V. D., Verra, F., Bancone, G., Nebie, I., Sirima, B. S., Liotta, F., Frosali, F., Angeli, R., Severini, C., Sannella, A. R., Bonini, P., Lucibello, M., Maggi, E., Garaci, E., Coluzzi, M., Cozzolino, F., Annunziato, F., Romagnani, S. and Modiano, D. (2008). Functional deficit of T regulatory cells in Fulani, an ethnic group with low susceptibility to Plasmodium falciparum malaria. Proceedings of the National Academy of Sciences of the United States of America 105, 646651.CrossRefGoogle ScholarPubMed
Toure-Balde, A., Sarthou, J. L., Aribot, G., Michel, P., Trape, J. F., Rogier, C. and Roussilhon, C. (1996). Plasmodium falciparum induces apoptosis in human mononuclear cells. Infection and Immunity 64, 744750.CrossRefGoogle ScholarPubMed
Tran, T. M., Samal, B., Kirkness, E. and Crompton, P. D. (2012). Systems immunology of human malaria. Trends in Parasitology 28, 248257.CrossRefGoogle ScholarPubMed
Tran, T. M., Li, S., Doumbo, S., Doumtabe, D., Huang, C. Y., Dia, S., Bathily, A., Sangala, J., Kone, Y., Traore, A., Niangaly, M., Dara, C., Kayentao, K., Ongoiba, A., Doumbo, O. K., Traore, B. and Crompton, P. D. (2013). An intensive longitudinal cohort study of Malian children and adults reveals no evidence of acquired immunity to Plasmodium falciparum infection. Clinical Infectious Diseases 57, 4047.CrossRefGoogle ScholarPubMed
Troye-Blomberg, M., Romero, P., Patarroyo, M. E., Bjorkman, A. and Perlmann, P. (1984). Regulation of the immune response in Plasmodium falciparum malaria. III. Proliferative response to antigen in vitro and subset composition of T cells from patients with acute infection or from immune donors. Clinical and Experimental Immunology 58, 380387.Google ScholarPubMed
Troye-Blomberg, M., Worku, S., Tangteerawatana, P., Jamshaid, R., Soderstrom, K., Elghazali, G., Moretta, L., Hammarstrom, M. and Mincheva-Nilsson, L. (1999). Human gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the Plasmodium falciparum parasite express cytolytic and pro-inflammatory molecules. Scandinavian Journal of Immunology 50, 642650.CrossRefGoogle Scholar
Urban, B. C., Ferguson, D. J., Pain, A., Willcox, N., Plebanski, M., Austyn, J. M. and Roberts, D. J. (1999). Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 7377.CrossRefGoogle ScholarPubMed
Urban, B. C., Mwangi, T., Ross, A., Kinyanjui, S., Mosobo, M., Kai, O., Lowe, B., Marsh, K. and Roberts, D. J. (2001 a). Peripheral blood dendritic cells in children with acute Plasmodium falciparum malaria. Blood 98, 28592861.CrossRefGoogle ScholarPubMed
Urban, B. C., Willcox, N. and Roberts, D. J. (2001 b). A role for CD36 in the regulation of dendritic cell function. Proceedings of the National Academy of Sciences of the United States of America 98, 87508755.CrossRefGoogle ScholarPubMed
Urban, B. C., Cordery, D., Shafi, M. J., Bull, P. C., Newbold, C. I., Williams, T. N. and Marsh, K. (2006). The frequency of BDCA3-positive dendritic cells is increased in the peripheral circulation of Kenyan children with severe malaria. Infection and Immunity 74, 67006706.CrossRefGoogle ScholarPubMed
Walther, M., Tongren, J. E., Andrews, L., Korbel, D., King, E., Fletcher, H., Andersen, R. F., Bejon, P., Thompson, F., Dunachie, S. J., Edele, F., de Souza, J. B., Sinden, R. E., Gilbert, S. C., Riley, E. M. and Hill, A. V. (2005). Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 23, 287296.CrossRefGoogle ScholarPubMed
Walther, M., Woodruff, J., Edele, F., Jeffries, D., Tongren, J., King, E., Andrews, L., Bejon, P., Gilbert, S., Souza, J. D., Sinden, R., Hill, A. and Riley, E. (2006). Innate immune responses to human malaria: heterogeneous cytokine responses to blood-stage Plasmodium falciparum correlate with parasitological and clinical outcomes. Journal of Immunology 177, 57365745.CrossRefGoogle ScholarPubMed
Walther, M., Jeffries, D., Finney, O. C., Njie, M., Ebonyi, A., Deininger, S., Lawrence, E., Ngwa-Amambua, A., Jayasooriya, S., Cheeseman, I. H., Gomez-Escobar, N., Okebe, J., Conway, D. J. and Riley, E. M. (2009). Distinct roles for FOXP3 and FOXP3 CD4T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathogens 5, e1000364.CrossRefGoogle Scholar
Wang, Q. H., Liu, Y. J., Liu, J., Chen, G., Zheng, W., Wang, J. C. and Cao, Y. M. (2009). Plasmodium yoelii: assessment of production and role of nitric oxide during the early stages of infection in susceptible and resistant mice. Experimental Parasitology 121, 268273.CrossRefGoogle ScholarPubMed
Weidanz, W. P., Batchelder, J. M., Flaherty, P., LaFleur, G., Wong, C. and van der Heyde, H. C. (2005). Plasmodium chabaudi adami: use of the B-cell-deficient mouse to define possible mechanisms modulating parasitemia of chronic malaria. Experimental Parasitology 111, 97104.CrossRefGoogle ScholarPubMed
Weidanz, W. P., LaFleur, G., Brown, A., Burns, J. M. Jr., Gramaglia, I. and van der Heyde, H. C. (2010). Gammadelta T cells but not NK cells are essential for cell-mediated immunity against Plasmodium chabaudi malaria. Infection and Immunity 78, 43314340.CrossRefGoogle Scholar
Winkler, S., Willheim, M., Baier, K., Schmid, D., Aichelburg, A., Graninger, W. and Kremsner, P. G. (1998). Reciprocal regulation of Th1- and Th2-cytokine-producing T cells during clearance of parasitemia in Plasmodium falciparum malaria. Infection and Immunity 66, 60406044.CrossRefGoogle ScholarPubMed
Wipasa, J., Xu, H., Stowers, A. and Good, M. F. (2001). Apoptotic deletion of Th cells specific for the 19-kDa carboxyl-terminal fragment of merozoite surface protein 1 during malaria infection. Journal of Immunology 167, 39033909.CrossRefGoogle ScholarPubMed
Wipasa, J., Okell, L., Sakkhachornphop, S., Suphavilai, C., Chawansuntati, K., Liewsaree, W., Hafalla, J. C. and Riley, E. M. (2011). Short-lived IFN-gamma effector responses, but long-lived IL-10 memory responses, to malaria in an area of low malaria endemicity. PLoS Pathogens 7, e1001281.CrossRefGoogle Scholar
Woodberry, T., Pinzon-Charry, A., Piera, K. A., Panpisutchai, Y., Engwerda, C. R., Doolan, D. L., Salwati, E., Kenangalem, E., Tjitra, E., Price, R. N., Good, M. F. and Anstey, N. M. (2009). Human T cell recognition of the blood stage antigen Plasmodium hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT) in acute malaria. Malaria Journal 8, 122.CrossRefGoogle Scholar
Worku, S., Bjorkman, A., Troye-Blomberg, M., Jemaneh, L., Farnert, A. and Christensson, B. (1997). Lymphocyte activation and subset redistribution in the peripheral blood in acute malaria illness: distinct gammadelta+ T cell patterns in Plasmodium falciparum and P. vivax infections. Clinical and Experimental Immunology 108, 3441.CrossRefGoogle ScholarPubMed
World Health Organisation (2014). World Malaria Report 2014.Google Scholar
Wu, Y., Wang, Q. H., Zheng, L., Feng, H., Liu, J., Ma, S. H. and Cao, Y. M. (2007). Plasmodium yoelii: distinct CD4(+)CD25(+) regulatory T cell responses during the early stages of infection in susceptible and resistant mice. Experimental Parasitology 115, 301304.CrossRefGoogle ScholarPubMed
Wykes, M. N. and Good, M. F. (2008). What really happens to dendritic cells during malaria? Nature Reviews Microbiology 6, 864870.CrossRefGoogle ScholarPubMed
Wykes, M. N. and Good, M. F. (2009). What have we learnt from mouse models for the study of malaria? European Journal of Immunology 39, 20042007.CrossRefGoogle Scholar
Wykes, M. N., Liu, X. Q., Beattie, L., Stanisic, D. I., Stacey, K. J., Smyth, M. J., Thomas, R. and Good, M. F. (2007 a). Plasmodium strain determines dendritic cell function essential for survival from malaria. PLoS Pathogens 3, e96.CrossRefGoogle ScholarPubMed
Wykes, M. N., Liu, X. Q., Jiang, S., Hirunpetcharat, C. and Good, M. F. (2007 b). Systemic tumor necrosis factor generated during lethal Plasmodium infections impairs dendritic cell function. Journal of Immunology 179, 39823987.CrossRefGoogle ScholarPubMed
Xu, H., Wipasa, J., Yan, H., Zeng, M., Makobongo, M. O., Finkelman, F. D., Kelso, A. and Good, M. F. (2002). The mechanism and significance of deletion of parasite-specific CD4(+) T cells in malaria infection. The Journal of Experimental Medicine 195, 881892.CrossRefGoogle ScholarPubMed
Yoneto, T., Waki, S., Takai, T., Tagawa, Y., Iwakura, Y., Mizuguchi, J., Nariuchi, H. and Yoshimoto, T. (2001). A critical role of Fc receptor-mediated antibody-dependent phagocytosis in the host resistance to blood-stage Plasmodium berghei XAT infection. Journal of Immunology 166, 62366241.CrossRefGoogle ScholarPubMed