Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T11:20:15.182Z Has data issue: false hasContentIssue false

Evolutionary ecology of vertically transmitted parasites: transovarial transmission of a microsporidian sex ratio distorter in Gammarus duebeni

Published online by Cambridge University Press:  06 April 2009

A. M. Dunn
Affiliation:
Department of Pure and Applied Biology, University of Leeds, Leeds, LS2 9JT, UK
M. J. Hatcher
Affiliation:
Department of Pure and Applied Biology, University of Leeds, Leeds, LS2 9JT, UK
R. S. Terry
Affiliation:
Department of Pure and Applied Biology, University of Leeds, Leeds, LS2 9JT, UK
C. Tofts
Affiliation:
Department of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

Summary

Vertically transmitted parasites are transmitted from generation to generation of hosts usually via the host's gametes. Owing to gamete size dimorphism, the major transmission route is transovarial and selection (on the parasite) favours strategies which increase the relative frequency of the transmitting (female) host sex. These strategies impose unusual selection pressures on the host, and coevolution between hosts and vertically transmitted parasites has been implicated in speciation, in the evolution of symbiosis, and in the evolution of novel systems of host reproduction and sex determination. We review the evolutionary implications of vertically transmitted parasites in arthropods before focusing on strategies of transmission of a parasitic sex ratio distorter in Gammarus duebeni. The efficiency of parasite transmission to new hosts is a key factor underlying the relationship between vertically transmitted parasites and their hosts. Vertically transmitted parasites must overcome 2 bottlenecks in order to ensure successful infection of future host generations: first, transmission from adult to gamete; and secondly, transmission to the germ-line of the infected host. We investigate these 2 processes with regard to transovarial transmission by a microsporidian parasite in Gammarus duebeni. Parasite transmission from adult to eggs is highly efficient, with 96% of eggs of infected mothers inheriting the infection, whereas transmission to germ-line within infected embryos is relatively inefficient (72%). We measure parasite distribution between cells of developing embryos, and use these distributions to infer possible mechanisms of parasite transmission to germ-line. Parasite distribution within the embryo is dependent on host cell lineage, and is not consistent with unbiased segregation between daughter cells. These results indicate that parasites segregate together at host cell division, and may reflect a strategy of differential segregation to the host germ-line. We consider alternative parasite strategies at the cell-level in terms of their evolutionary implications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, J. & Greenwood, P. J. (1983). Why are males bigger than females in precopula pairs of Gammarus pulex? Behavioral Ecology and Sociobiology 13, 239–41.CrossRefGoogle Scholar
Adams, J., Greenwood, P. & Naylor, C. J. (1987). Evolutionary aspects of environmental sex determination. International Journal of Invertebrate Reproduction and Development 11, 123–36.CrossRefGoogle Scholar
Anderson, D. T. (1973). Embryology and Phylogeny in Annelids and Arthropods. Oxford: Pergamon Press, p. 495.Google Scholar
Anderson, R. M. (1991). Populations and infectious diseases: ecology or epidemiology? Journal of Animal Ecology 60, 150.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1981). The population dynamics of microparasites and their invertebrate hosts. Philosophical Transactions of the Royal Society, London, B 291, 451524.Google Scholar
Anderson, R. M. & May, R. M.. (1982). Coevolution of parasites and hosts. Parasitology 85, 411–26.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1991). Infectious Diseases of Humans. Dynamics and Control. Oxford: Oxford University Press.CrossRefGoogle Scholar
Andreadis, T. G. (1985). Experimental transmission of a microsporidian pathogen from mosquitoes to alternate copepod host. Proceedings of the National Academy of Sciences, USA 82, 5574–7.CrossRefGoogle ScholarPubMed
Andreadis, T. G. & Hall, D. W. (1979). Significance of transovarial infections of Amblyospora sp. (Microspora: Thelohaniidae) in relation to parasitic maintenance in the mosquito Culex salinarius. Journal of Invertebrate Pathology 34, 152–7.CrossRefGoogle ScholarPubMed
Avery, S. W. & Undeen, A. H. (1990). Horizontal transmission of Parathelohania anophelis to the copepod, Microcyclops varicans, and the mosquito, Anopheles quadrimaculatus. Journal of Invertebrate Pathology 56, 98105.CrossRefGoogle Scholar
Beukeboom, L. W. & Werren, J. H. (1992). Population genetics of a parasitic chromosome: experimental analysis of psr in subdivided populations. Evolution 46, 1257–68.CrossRefGoogle ScholarPubMed
Beukeboom, L. W. & Werren, J. H. (1993). Transmission and expression of the parasitic paternal sex ratio (PSR) chromosome. Heredity 70, 437–3.CrossRefGoogle Scholar
Breeuwer, J. A. J., Stouthamer, R., Barns, S. M., Pelletier, D. A., Weisburg, W. G. & Werren, J. H. (1992). Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Molecular Biology 1, 2536.CrossRefGoogle ScholarPubMed
Breeuwer, J. A. J. & Werren, J. H. (1990). Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346, 558–60.CrossRefGoogle ScholarPubMed
Breeuwer, J. A. J. & Werren, J. H. (1993). Effect of genotype on cytoplasmic incompatibility between two species of Nasonia. Heredity 70, 428–36.CrossRefGoogle Scholar
Buchner, P. (1965). Endosymbiosis of Animals with Plant Microorganisms. New York Interscience Publications.Google Scholar
Bull, J. J. (1983). The Evolution of Sex Determining Mechanisms. California: Benjamin Cummings.Google Scholar
Bull, J. J. (1994). Virulence. Evolution 48, 1423–37.Google ScholarPubMed
Bull, J. J., Molineux, I. J. & Rice, W. R. (1991). Selection of benevolence in a host-parasite system. Evolution 45, 875–82.Google Scholar
Bull, J. J. & Rice, W. R. (1991). Distinguishing mechanisms for the evolution of co-operation. Journal of Theoretical Biology 149, 6374.CrossRefGoogle ScholarPubMed
Bulnheim, H. P. & Vavra, J. (1968). Infection by the microsporidia Octosporea effeminans sp. n., and its sex determining influence in the amphipod Gammarus duebeni. Journal of Parasitology 54, 241–8.CrossRefGoogle Scholar
Bulnheim, H. P. (1978). Interaction between genetic, external and parasitic factors in sex determination of the crustacean amphipod Gammarus duebeni. Helgolander wiss Meeresunters 31, 133.CrossRefGoogle Scholar
Callaini, G., Riparbelli, M. G. & Dallai, R. (1994). The distribution of cytoplasmic bacteria in the early Drosophila embryo is mediated by astral microtubules. Journal of Cell Science 107, 673–82.CrossRefGoogle ScholarPubMed
Canning, E. U. (1982). An evaluation of protozoal characteristics in relation to biological control of pests. Parasitology 84, 119–49.CrossRefGoogle Scholar
Coffin, J. M. (1995). HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483–9.CrossRefGoogle ScholarPubMed
Dickson, D. L. & Barr, A. R. (1990). Development of Amblyospora campbelli (Microsporidia: Amblyosporidae) in the mosquito Culiseta incidens (Thomson). Journal of Protozoology 37, 71–8.CrossRefGoogle Scholar
Dixon, K. E. (1994). Evolutionary aspects of primordial germ cell formation. Ciba Foundation Symposium 182, 92120.Google ScholarPubMed
Douglas, A. E. (1989). Mycetocyte symbiosis in insects. Biological Reviews 64, 409–34.CrossRefGoogle ScholarPubMed
Douglas, A. E. & Prosser, W. A. (1992). Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis. Journal of Insect Physiology 38, 565–8.CrossRefGoogle Scholar
Dunn, A. M., Adams, J. & Smith, J. E. (1993). Transovarial transmission and sex ratio distortion by a microsporidian parasite in a shrimp. Journal of Invertebrate Pathology 61, 248–52.CrossRefGoogle Scholar
Eberle, M. W. & McLean, D. L. (1982). Initiation and orientation of the symbiote migration in the human body louse Pediculus humanus L. Journal of Insect Physiology 28, 417–22.CrossRefGoogle Scholar
Erhman, L. & Daniels, S. (1975). Pole cells of Drosophila paulistorum: embryologic differentiation with symbionts. Australian Journal of Biological Sciences 28, 133–44.Google Scholar
Erhman, L., Somerson, N. L. & Kocka, J. P. (1990). Induced hybrid sterility by injection of streptococcal L-forms into Drosophila paulistorum: dynamics of infection. Canadian Journal of Zoology 68, 1735–40.Google Scholar
Ewald, P. W. (1987). Transmission modes and the evolution of the parasite-mutualism continuum. Annals of the New York Academy of Science 503, 295306.CrossRefGoogle ScholarPubMed
Fine, P. E. M. (1975). Vectors and vertical transmission; an epidemiological perspective. Annals of the New York Academy of Science 266, 173–94.CrossRefGoogle Scholar
Fioroni, P. (1981). Zum Aufreten der Geschlechtszellen im Ontogenese-verlauf der Krebse- mit Besondere Berucksichtigung der Crustacea Malocostraca. Cahiers de Biologie Marine 22, 383406.Google Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Frank, S. A. (1989). The evolutionary dynamics of cytoplasmic male sterility. American Naturalist 133, 345–76.CrossRefGoogle Scholar
Fukatsu, T. & Ishikawa, H. (1992). Soldier and male of an eusocial aphid Colophina arma lack endosymbiont: implications for physiological and evolutionary interaction between host and symbiont. Journal of Insect Physiology 38, 1033–42.CrossRefGoogle Scholar
Cherna, R. L., Werren, J. H., Weisburg, W., Cote, R., Woese, C. R., Mandelco, L. & Brenner, D. J. (1991). Arsenophonous nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. International Journal of Systematic Bacteriology 41, 563–5.Google Scholar
Ginsburger-Vogel, T. (1991). Intersexuality in Orchestia mediterranea Costa 1853 and Orchestia aestuarensis Wildish 1987 (Amphipoda): a consequence of hybridization or parasitic infestation? Journal of Crustacean Biology 11, 530–9.CrossRefGoogle Scholar
Ginsburger-Vogel, T. & Desportes, I. (1979). Structure and biology of Martelia sp. in the amphipod Orchestia gammarellus. Marine Fish Review 41, 37.Google Scholar
Glover, D. M., Raff, J., O'neill, S. L., Lin, H. & Wolfner, M. F. (1990). Parasites in Drosophila embryos. Nature 348, 117.CrossRefGoogle ScholarPubMed
Gupta, S. & Day, K. P. (1994). A strain theory of malaria transmission. Parasitology Today 10, 476–81.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1967). Extraordinary sex ratios. Science 156, 477–88.CrossRefGoogle ScholarPubMed
Hatcher, M. J. & Dunn, A. M. (1995). Evolutionary consequences of sex ratio distortion by cytopolasmically inherited feminizing factors. Philosophical Transactions of the Royal Society, London, B 348, 445–56.Google Scholar
Hatcher, M. J. & Tofts, C. (1995). The effect of point of expression on ESS sex ratios. Journal of Theoretical Biology 175, 263–6.CrossRefGoogle ScholarPubMed
Hatcher, M. J., Tofts, C. & Dunn, A. M. (1995). The effect of the embryonic bottleneck on vertically transmitted parasites. Proceedings of the 1st Conference on Information Processing in Cells. (In Press).Google Scholar
Herre, E. A. (1993). Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 1442–4.CrossRefGoogle ScholarPubMed
Houk, E. J. & Griffiths, G. W. (1980). Intracellular symbiotes of the homoptera. Annual Review of Entomology 25, 161–87.CrossRefGoogle Scholar
Howard, H. W. (1942). The genetics of Armadillidium vulgare Latreile. II. Studies on the inheritance of monogeny and amphogeny. Journal of Genetics 44, 143–59.CrossRefGoogle Scholar
Huger, A., Skinner, S. W. & Werren, J. H. (1985). Bacterial infections associated with the son killer trait in the parasitoid wasp Nasonia ( = Mormoniella) vitripennis. Journal of Invertebrate Pathology 46, 272–85.CrossRefGoogle Scholar
Hurst, G. D. D., Majerus, M. E. N. & Walker, L. E. (1992). Cytoplasmic male killing elements in Adalia bipunctata (Linnaeus) (Coloeptera: Coccinellidae). Heredity 69, 8491.CrossRefGoogle Scholar
Hurst, G. D. D. & Majerus, M. E. N. (1993). Why do maternally inherited microorganisms kill bacteria? Heredity 71, 8195.CrossRefGoogle Scholar
Hurst, L. D. (1991 a). The incidences and evolution of cytoplasmic male killers. Proceedings of the Royal Society of London, B 244, 91–9.Google Scholar
Hurst, L. D. (1991 b). The evolution of cytoplasmic incompatibility or when spite can be successful. Journal of Theoretical Biology 148, 269–77.CrossRefGoogle ScholarPubMed
Hurst, L. D. (1993). The incidences, mechanisms and evolution of cytoplasmic sex ratio distorters in animals. Biological Reviews 68, 121–93.CrossRefGoogle Scholar
Hurst, L. D. & Pomiankowski, A. N. (1991). Causes of sex ratio bias within species may also account for unisexual sterility in species hybrids: a new explanation of Haldane's rule and related phenomena. Genetics 128, 841–58.CrossRefGoogle ScholarPubMed
Juchault, P., Frelon, M., Bouchon, D. & Rigaud, T. (1994). New evidence for feminizing bacteria in terrestrial isopods: evolutionary implications. Comptes Rendus de l' Academie des Sciences, Paris 317, 225–30.Google Scholar
Juchault, P. & Legrand, J. J. (1972). Croisements de neo-males experimentaux chez Armadillidium vulgare Latr. (Crustace, Isopode Oniscoide). Mise en evidence d'une heterogametie femelle. Comptes Rendus de l' Academie des Sciences Paris 274, 1387–9.Google Scholar
Juchault, P. & Legrand, J. J. (1979). Analyse genetique et physiologique de la determination du sexe dans une population du crustace isopode oniscoide Armadillidium nasatum Budde-Lund. Archives de Zoologie Experiinentale Genetique 120, 2543.Google Scholar
Juchault, P. & Mocquard, J. P. (1989). Effet de l'innoculation d'une bacterie endocellulaire feminisante sur la croissance et la reproduction des femelles du Crustace Oniscoide Armadillidium vulgare (Latr.) Consequences possible sur l'evolution des populations. Crusaceana 56, 8392.CrossRefGoogle Scholar
Juchaiult, P. & Mocquard, J. P. (1993). Transfer of a parasitic sex factor to the nuclear geneome of the host: A hypothesis on the evolution of sex-determining mechanisms in the terrestrial Isopod Armadillidium vulgare Latr. Journal of Evolutionary Biology 6, 511–28.CrossRefGoogle Scholar
Juchault, P., Rigaud, T. & Mocquard, J. P. (1992). Evolution of sex-determining mechanisms in a wild population of Armadillidium vulgare Ltr. (Crustacea, Isopoda): competition between two feminizing parasitic sex factors. Heredity 69, 382–90.CrossRefGoogle Scholar
Juchault, P., Rigaud, T. & Mocquard, J. P. (1993). Evolution of sex determination and sex ratio variability in wild populations of Armadillidium vulgare (Latr) (Crustacea, Isopoda): a case study in conflict resolution. Acta Oecologia 14, 547562.Google Scholar
Juchault, P., Frelon, M., Bouchon, D. & Rigaud, T. (1994). New evidence for feminizing bacteria in terrestrial isopods: evolutionary implications. Comptes Rendus de l' Academie des Sciences, Paris 317, 225–30.Google Scholar
Katakura, Y (1967). Hormonal Control Of Sex Differentiation In The Terrestrial Isopod Armadillidium Vulgare. Gunma Symposium Of Endocrinology 4, 4964.Google Scholar
Kellen, W. R., Chapman, H. C., Clark, T. B. & Lindegren, J. E. (1965). Host-parasite relationship of some Thelohania from mosquitoes (Nosematidae: Microsporidia). Journal of Invertebrate Pathology 7, 161–6.CrossRefGoogle Scholar
Kellen, W. R., Clark, T. B. & Lindegren, J. E. (1967). Two previously undescribed Nosema from mosquitoes of California. Journal of Invertebrate Pathology 9, 1925.CrossRefGoogle Scholar
Kellen, W. R. & Lindegren, J. E. (1973). Transovarial transmission of Nosema plodiae in the Indian-meal moth, Plodia interpunctella. Journal of Invertebrate Pathology 21, 248–54.CrossRefGoogle Scholar
Kellen, W. R., Hoffman, D. F. & Kwock, R. A. (1981). Wolbachia sp. (Rikkettsiales: Rickettsiaceae). a symbiont of the almond moth Ephesgia cautella, ultrastructure and influence on host fertility. Journal of Invertebrate Pathology 37, 273–83.CrossRefGoogle Scholar
Kellen, W. R. & Wills, W. (1962). The transovarial transmission of Thelohania californica Kellen and Lipa in Culex tarsalis Coquillet. Journal of Insect Pathology 4, 321–6.Google Scholar
Legrand, J. J. & Juchault, P. (1984). Nouvelles donnees sur le determinime genetique et epigenetique de la onogenie chez le crustace isopode terrestre Armadillidium vulgare Latr. Genetique Selection Evolution 16, 5784.CrossRefGoogle Scholar
Legrand, J. J., Juchault, P., Moraga, D. & Legrand-Hamelin, E. (1986). Microorganismes symbiotiques et speciation. Bulletin de la Societe Zoologique de France 111, 135–47.Google Scholar
Legrand, J. J., Legrand-Hamelin, E. & Juchault, P. (1987). Sex determination in Crustacea. Biological Reviews 62, 439–70.CrossRefGoogle Scholar
Lewis, D. (1941). Male sterility in natural populations of hermaphrodite plants. New Phytologist 40, 5663.CrossRefGoogle Scholar
Malogolowkin, C. (1958). Maternally inherited ‘sex ratio’ conditions in Drosophila willistoni and Drosophila paulistorum. Genetics 43, 274–86.CrossRefGoogle ScholarPubMed
Margulis, L. (1970). Origin of Eukaryotic Cells. New Haven: Yale University Press.Google Scholar
Margulis, L. (1981). Symbiosis in Cell Evolution. San Francisco, W. H. Freeman & Co.Google Scholar
Martin, G., Juchault, P. & Legrand, J. J. (1973). Mise en evidence d'un microorganisme intracytoplasmique symbiote de l'oniscoide Armadilldium vulgare Latr. dont la presence accompagne l'intersexulite ou la femisation totale des males genetiques de la lignee thelygene. Comptes Rendus de l' Academie des Sciences, Paris 276, 2313–16.Google Scholar
Martin, G., Gruppe, S. G., Laulier, M., Bouchon, D., Rigaud, T. & Juchault, P. (1994). Evidence for Wolbachea spp in the estuarine isopod Sphaeroma rugicauda (Crustacea) a likely cytoplasmic sex ratio distorter. Endocytobiosis and Cell Research 10, 215–25.Google Scholar
May, R. M. & Anderson, R. M. (1990). Parasite-host coevolution. Parasitology 100, S89–S1O1.CrossRefGoogle ScholarPubMed
McCabe, J. R. (1994). Reproductive Strategies in an Aquatic Crustacean. PhD Thesis, Imperial College of Science Technology and Medicine, U. K.Google Scholar
Muller, H. J. (1964). The relation of recombination to mutational advance. Mutation Research 1, 29.CrossRefGoogle Scholar
Naylor, C. J., Adams, J. & Greenwood, P. J. (1988 a). Population dynamics and adaptive sexual strategies in a brackish water crustacean Gammarus duebeni. Journal of Animal Ecology 57, 493507.CrossRefGoogle Scholar
Naylor, C. J., Adams, J. & Greenwood, P. J. (1988 b). Variation in sex determination in natural populations of a shrimp. Journal of Evolutionary Biology 1, 355–68.CrossRefGoogle Scholar
Nur, U., Werren, J. H., Eickbush, D. G., Burke, W. D. & Eickbush, T. H. (1988). A “selfish” B chromosome that enhances its transmission by eliminating the paternal genome Science 240, 512–14.CrossRefGoogle Scholar
O'neill, S. L., Giordano, R., Colbert, A. M. E., Karr, T. L. & Robertson, H. M. (1992). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proceedings of the National Academy of Sciences, USA 89, 2699–702.CrossRefGoogle ScholarPubMed
O'neill, S. L. & Karr, T. L. (1990). Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348, 178–80.CrossRefGoogle ScholarPubMed
Prosser, W. A. & Douglas, A. E. (1991). The aposymbiotic aphid: an analysis of chlorotetracyclinetreated pea aphid, Arythosiphon pisum. Journal of Insect Physiology 37, 713–19.CrossRefGoogle Scholar
Rappaport, R. (1960). The origin and formation of blastoderm cells of gammarid Crustacea. Journal of Experimental Zoology 144, 4360.CrossRefGoogle ScholarPubMed
Reed, K. M. & Werren, J. H. (1995). Induction of paternal genome loss by the paternal sex ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia) a comparative study of early embryonic events. Molecular Reproduction and Development 40, 408–18.CrossRefGoogle ScholarPubMed
Rigaud, T. & Juchault, P. (1992). Genetic control of the vertical transmission of a cytoplasmic sex factor in Armadillidium vulgare Latr. (Crustacea, Oniscidea). Heredity 68, 4752.CrossRefGoogle Scholar
Rigaud, T. & Juchault, P. (1993). Conflict between feminizing sex ratio distorters and an autosomal masculinizing gene in the terrestrial isopod Armadillidium vulgare Latr. Genetics 133, 247–52.CrossRefGoogle Scholar
Rigaud, T., Juchault, P. & Mocquard, J. P. (1991). Experimental study of temperature effects on the sex ratio of broods in terrestrial Crustacea Armadillidium vulgare Latr. Possible implication in natural populations. Journal of Evolutionary Biology 4, 603–17.CrossRefGoogle Scholar
Rigaud, T., Mocquard, J. P. & Juchault, P. (1992). The spread of parasitic sex factors in populations of Armadillidium vulgare Latr. (Crustacea, Oniscidea): effects on sex ratio. Genetique Selection Evolution 24, 318.CrossRefGoogle Scholar
Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. (1992). Wolbachia symbionts responsible for various alterations of sexuality in arthropods. Proceedings of the Royal Society of London Series B 250, 91–8.Google ScholarPubMed
Rousset, F. & Raymond, M. (1991). Cytoplasmic incompatibility in insects: why sterilize females? Trends in Ecology and Evolution 6, 54–7.CrossRefGoogle ScholarPubMed
Schmid-Hempel, P. & Koella, J. C. (1994). Variability and its implications for host-parasite interactions. Parasitology Today 10, 98103.CrossRefGoogle ScholarPubMed
Skinner, S. W. (1982). Maternally inherited sex ratio in the parasitoid wasp Nasonia vitripennis. Science 215, 1133–4.CrossRefGoogle ScholarPubMed
Skinner, S. W. (1985). Son-killer: a third extrachromosomal factor affecting the sex ratio in the parasitoid wasp, Nasonia ( = Mormoniella) vitripennis. Genetics 109, 745–59.CrossRefGoogle ScholarPubMed
Skinner, S. W. (1987). Paternal transmission of an extrachromosomal factor in a wasp: evolutionary implications. Heredity 59, 4753.CrossRefGoogle Scholar
Smith, J. E. & Dunn, A. M. (1991). Transovarial transmission. Parasitology Today 7, 146–8.CrossRefGoogle ScholarPubMed
Sokal, R. R. & Rohlf, F. J. (1981). Biometry. New York: W. H. Freeman & Co.Google Scholar
Somerson, N. L., Ehrman, L., Knocka, J. P. & Gottlieb, F. J. (1984). Streptococcal L-forms isolated from Drosophila paulistorum semispecies cause sterility in male progeny. Proceedings of the National Academy of Sciences, USA 81, 282–5.CrossRefGoogle ScholarPubMed
Stouthamer, R. (1993). The use of sexual versus asexual waps in biological control. Entomophaga 38, 36.CrossRefGoogle Scholar
Stouthamer, R., Breeuwer, J. A. J., Luck, R. F. & Werren, J. H. (1993). Molecular identification of microorganisms associated with parthenogenesis. Nature 361, 66–8.CrossRefGoogle ScholarPubMed
Stouthamer, R., Luck, R. F. & Hamilton, W. D. (1990). Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proceedings of the National Academy of Sciences, USA 87, 2424–7.CrossRefGoogle ScholarPubMed
Stouthamer, R. & Kazmer, D. J. (1994). Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73, 317–27.CrossRefGoogle Scholar
Stouthamer, R. & Werren, J. H. (1993). Microbes associated with parthenogenesis in wasps of the genus Trichogramma. Journal of Invertebrate Pathology 61, 69.CrossRefGoogle Scholar
Strome, S., Garvin, C., Paulsen, J., Capowski, E., Martin, P. & Beanan, M. (1994). Specification and development of the germ-line in Caenorhabditis elegans. Ciba Foundation Symposium 182, 3151.Google ScholarPubMed
Sweeney, A. W., Hazard, E. I. & Graham, M. F. (1985). Intermediate host for an Amblyospora sp. (Microspora) infecting the mosquito, Culex annulirostris. Journal of Invertebrate Pathology 46, 98102.CrossRefGoogle ScholarPubMed
Sweeney, A. W., Graham, M. F. & Hazard, E. I. (1988). Life-cycle of Amblyspora-dyxenoides sp. nov. in the mosquito Culex-annulirostris and the copepod Mesocyclops albicans. Journal of Invertebrate Pathology 51, 4657.CrossRefGoogle ScholarPubMed
Taylor, D. R. (1990). Evolutionary consequences of cytoplasmic sex ratio distorters. Evolutionary Ecology 4, 235–48.CrossRefGoogle Scholar
Vale, T. G., Dowling, M. L. & Cloonan, M. J. (1992). Infection and multiplication of Ross River virus in the mosquito vector Aedes vigilax (Skuse). Australian Journal of Zoology 40, 3541.CrossRefGoogle Scholar
Wade, M. J. & Stevens, L. (1985). Microorganism mediated reproductive isolation in the flour beetle (genus Tribolium). Science 227, 527–8.CrossRefGoogle ScholarPubMed
Watt, P. J. & Adams, J. (1993). Adaptive sex determination and population dynamics in a brackish water amphipod. Estuarine, Coastal and Shelf Science 37, 237–50.Google Scholar
Watt, P. J. & Adams, J. (1994). Adaptive variation in sex determination in a crustacean. Journal of Zoology, London 232, 109–16.CrossRefGoogle Scholar
Werren, J. H. (1983). Sex ratio evolution under local mate competition in a parasitic wasp. Evolution 37, 116–24.CrossRefGoogle Scholar
Werren, J. H. (1984). A model for sex ratio selection in parasitic wasps: local mate competiton and host quality effects. Netherlands Journal of Zoology 34, 8196.CrossRefGoogle Scholar
Werren, J. H. (1987). The coevolution of autosomal and cytoplasmic sex ratio factors. Journal of Theoretical Biology 124, 313–34.CrossRefGoogle Scholar
Werren, J. H. (1991). The paternal sex ratio chromosome of Nasonia. American Naturalist 137, 392402.CrossRefGoogle Scholar
Werren, J. H. & Beukeboom, L. W. (1993). Population genetics of a parasitic chromosome: theoretical analysis of PSR in subdivided popualtions. American Naturalist 142, 224–41.CrossRefGoogle Scholar
Werren, J. H., Hurst, G. D. D., Zhanc, W., Breeuwer, J. A. J., Stouthamer, R. & Majerus, M. E. N. (1994). Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). Journal of Bacteriology 176, 388–94.CrossRefGoogle ScholarPubMed
Werren, J. H., Nur, U. & Eickbush, D. (1987). An extrachromosomal factor causing loss of paternal chromosomes. Nature 327, 75–6.CrossRefGoogle ScholarPubMed
Werren, J. H., Nur, U. & Wu, C.-I. (1988). Selfish genetic elements. Trends in Ecology and Evolution 3, 297302.CrossRefGoogle ScholarPubMed
White, M. J. D. (1984). Chromosomal mechanisms in animal reproduction. Bolletino di Zoologia 51, 123.CrossRefGoogle Scholar
Whitehead, L. F. & Douglas, A. E. (1993). Populations of symbiotic bacteria in the parthenogenetic pea aphid (Acyrthosiphon pisum) symbiosis. Proceedings of the Royal Society, London, B 254, 2932.Google Scholar
Whitehead, L. F., Wilkinson, T. L. & Douglas, A. E. (1992). Nitrogen recycling in the pea aphid (Acyrthosiphon pisum) symbiosis. Proceedings of the Royal Society of London N 250, 115–17.Google Scholar
Wright, J. D. & Barr, A. R. (1980). The ultrastructure and symnbiotic relationship of Wolbachia of mosquitos of the Aedes scutellaris group. Journal of Ultrastructure Research 72, 5264.CrossRefGoogle ScholarPubMed
Wright, J. D. & Barr, A. R. (1981). Wolbachia and the normal and incompatible eggs of Aedes polynesiensis (Diptera: Culicidae). Journal of Invertebrate Pathology 38, 409–18.CrossRefGoogle Scholar
Yen, J. H. & Barr, A. R. (1973). The etiological agent of cytoplasmic incompatibility in Culex pipiens. Journal of Invertebrate Pathology 22, 242–50.CrossRefGoogle ScholarPubMed