Skip to main content Accessibility help
×
Home

Detection and characterization of DNA polymerase activity in Toxoplasma gondii

  • A. Makioka (a1), B. Stavros (a1), J. T. Ellis (a1) and A. M. Johnson (a1)

Summary

A DNA polymerase activity has been detected and characterized in crude extracts from tachzoites of Toxoplasma gondii. The enzyme has a sedimentation coefficient of 6·4 S, corresponding to an approximate molecular weight of 150000 assuming a globular shape. Like mammalian DNA polymerase α, the DNA polymerase of T. gondii was sensitive to N-ethylmaleimide and inhibited by high ionic strength. However, the enzyme activity was not inhibited by aphidicolin which is an inhibitor of mammalian DNA polymerases α, δ and ε and also cytosine-β-D-arabinofuranoside-5′-triphosphate which is an inhibitor of α polymerase. The activity was inhibited by 2′,3′-dideoxythymidine-5′-triphosphate which is an inhibitor of mammalian DNA polymerase β and γ. Magnesium ions (Mg2+) were absolutely required for activity and its optimal concentration was 6 mM. The optimum potassium (K+) concentration was 50 mM and a higher concentration of K+ markedly inhibited the activity. Activity was optimal at pH 8. Monoclonal antibodies against human DNA polymerase did not bind to DNA polymerase of T. gondii. Thus the T. gondii enzyme differs from the human enzymes and may be a useful target for the design of toxoplasmacidal drugs.

Copyright

References

Hide All
Abu-Elheiga, L., Spira, D. T. & Bachrach, U. (1990). Plasmodium falciparum: properties of an α-like DNA polymerase, the key enzyme in DNA synthesis. Experimental Parasitology 71, 21–6.
Chang, L. M. S. & Bollum, F. J. (1972). Antigenic relationships in mammalian DNA polymerase. Science 175, 1116–17.
Chang, L. M. S., Cheriathundam, E., Mahoney, E. M. & Cerami, A. (1980). DNA polymerases in parasitic protozoans differ from host enzymes. Science 208, 510–11.
Choi, I. & Mikkelsen, R. B. (1991). Cell cycle-dependent biosynthesis of Plasmodium falciparum DNA polymerase-α. Experimental Parasitology 73, 93100.
De Vries, E., Stam, J. G., Franssen, F. F. J., Van Der Viet, P. C. & Overdulve, J. P. (1991). Purification and characterization of DNA polymerase from Plasmodium berghei. Molecular and Biochemical Parasitology 45, 223–32.
Dube, D. K., Williams, R. O., Seal, G. & Williams, S. C. (1979). Detection and characterization of DNA polymerase from Trypanosoma brucei. Biochimica et Biophysica Acta 561, 1016.
Fry, M. & Loeb, L. A. (1986). Animal Cell DNA Polymerases. Boca Raton Florida: CRC Press.
Holmes, A. M., Cheriathundam, E., Kalinski, A. & Chang, L. M. S. (1984). Isolation and partial characterization of DNA polymerases from Crithidia fasciculata. Molecular and Biochemical Parasitology 10, 195205.
Johnson, A. M., Makioka, A. & Ellis, J. T. (1993). A strategy for cloning a DNA polymerase gene of Toxoplasma gondii. In Toxoplasmosis, NATO/ARW Series (ed. Smith, J.). Berlin, Heidelberg: Springer-Verlag. (in the Press.)
Kesti, T. & Syväoja, J. E. (1991). Identification and tryptic cleavage of the catalytic core of HeLa and calf thymus DNA polymerase σ. journal of Biological Chemistry 266, 6336–41.
Leegwater, P. A. J., Strating, M., Murphy, N. B., Kooy, R. F., Van Der Vliet, P. C. & Overdulve, J. P. (1991). The Trypanosoma brucei DNA polymerase α core subunit gene is developmentally regulated and linked to a constitutively expressed open reading frame. Nucleic Acids Research 23, 6441–7.
Nolan, L. L. & Rivera, J. H. (1991). Partial purification and characterization of a β-like DNA polymerase from Leishmania mexicana. Biochemistry International 25, 499508.
Nolan, L. L. & Rivera, J. H. (1992). The DNA polymerases of Leishmania mexicana. FEMS Microbiology Letters 95, 71–6.
Nolan, L. L., Rivera, J. H., Khan, N. N. (1992). Isolation and partial characterization of a high-molecular weight DNA polymerase from Leishmania mexicana. Biochimica et Biophysicia Acta 1120, 322–8.
Pfefferkorn, E. R. (1984). Characterization of a mutant of Toxoplasma gondii resistant to aphidicolin. journal of Protozoology 31, 306–10.
Ridley, R. G., White, J. H., McAleese, S. M., Goman, M., Alano, P., De Vries, E. & Kilbey, B. J. (1991). DNA polymerase δ: gene sequences from Plasmodium falciparum indicate that this enzyme is more highly conserved than DNA polymerase α. Nucleic Acids Research 19, 6731–6.
Rojas, C., Venegas, J., Litvak, S. & Solari, A. (1992). Two DNA polymerases from Trypanosoma cruzi: biochemical characterization and effects of inhibitors. Comparative Biochemistry and Physiology 101C, 2733.
So, A. G. & Donkey, K. M. (1988). Mammalian DNA polymerases α and δ: current status in DNA replication. Biochemistry 27, 4591–5.
Solari, A., Tharaud, D., Repetto, Y., Aldunate, J., Morello, A. & Litvak, S. (1983). In vitro and in vivo studies of Trypanosoma cruzi DNA polymerase. Biochemistry International 7, 147–57.
Tanaka, S., Hu, S.-Z., Wang, T. S-F. & Korn, D. (1982). Preparation and preliminary characterization of monoclonal antibodies against human DNA polymerase α. Journal of Biological Chemistry 257, 8386–90.
Torri, A. F. & Englund, P. T. (1992). Purification of a mitochondrial DNA polymerase from Crithidia fasciculata. Journal of Biological Chemistry 267, 4786–92.
Tsurimoto, T., Melendy, T. & Stillman, B. (1990). Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature, London 346, 534–9.
Wang, T. S-F. (1991). Eukaryotic DNA polymerases. Annual Review of Biochemistry 60, 513–52.

Keywords

Detection and characterization of DNA polymerase activity in Toxoplasma gondii

  • A. Makioka (a1), B. Stavros (a1), J. T. Ellis (a1) and A. M. Johnson (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed