Skip to main content Accessibility help
×
Home

Crotoxin stimulates an M1 activation profile in murine macrophages during Leishmania amazonensis infection

  • L. H. S. FARIAS (a1) (a2), A. P. D. RODRIGUES (a2) (a3), E. C. COÊLHO (a1), M. F. SANTOS (a4), S. C. SAMPAIO (a5) (a6) and E. O. SILVA (a1) (a2)...

Summary

American tegumentary leishmaniasis is caused by different species of Leishmania. This protozoan employs several mechanisms to subvert the microbicidal activity of macrophages and, given the limited efficacy of current therapies, the development of alternative treatments is essential. Animal venoms are known to exhibit a variety of pharmacological activities, including antiparasitic effects. Crotoxin (CTX) is the main component of Crotalus durissus terrificus venom, and it has several biological effects. Nevertheless, there is no report of CTX activity during macrophage – Leishmania interactions. Thus, the main objective of this study was to evaluate whether CTX has a role in macrophage M1 polarization during Leishmania infection murine macrophages, Leishmania amazonensis promastigotes and L. amazonensis-infected macrophages were challenged with CTX. MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] toxicity assays were performed on murine macrophages, and no damage was observed in these cells. Promastigotes, however, were affected by treatment with CTX (IC50 = 22·86 µg mL−1) as were intracellular amastigotes. Macrophages treated with CTX also demonstrated increased reactive oxygen species production. After they were infected with Leishmania, macrophages exhibited an increase in nitric oxide production that converged into an M1 activation profile, as suggested by their elevated production of the cytokines interleukin-6 and tumour necrosis factor-α and changes in their morphology. CTX was able to reverse the L. amazonensis-mediated inhibition of macrophage immune responses and is capable of polarizing macrophages to the M1 profile, which is associated with a better prognosis for cutaneous leishmaniasis treatment.

Copyright

Corresponding author

*Corresponding authors: Laboratory of Parasitology and Laboratory of Structural Biology, Federal University of Para, Institute of Biological Sciences, Belém, Pará, Brazil. E-mail: edilene@ufpa.br and Laboratory of Pathophysiology, Butantan Institute, São Paulo, Brazil. E-mail: sandra.coccuzzo@butantan.gov.br

References

Hide All
Adade, C. M., Carvalho, A. L. O., Tomaz, M. A., Costa, T. F. R., Godinho, J. L., Melo, P. A., Lima, A. P. C. A., Rodrigues, J. C. F., Zingali, R. B. and Souto-Padrón, T. (2014). Crovirin, a snake venom cysteine-rich secretory protein (CRISP) with promising activity against trypanosomes and Leishmania . PLoS Neglected Tropical Diseases 8, e3252.
Aliberti, J., Serhan, C. and Sher, A. (2002 a). Parasite-induced lipoxin A4 is an endogenous regulator of IL-12 production and immunopathology in Toxoplasma gondii infection. Journal of Experimental Medicine 196, 12531262.
Aliberti, J., Hieny, S., Reis e Sousa, C., Serhan, C. N. and Sher, A. (2002 b). Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nature Immunology 3, 7682.
Barros, G. A. C., Pereira, A. V., Barros, L. C., L., A. Jr, Calvi, S. A., Santos, L. D., Barraviera, B. and Ferreira, R. S. (2015). In vitro activity of phospholipase A2 and of peptides from Crotalus durissus terrificus venom against amastigote and promastigote forms of Leishmania (L.) infantum chagasi . Journal of Venomous Animals and Toxins Including Tropical Diseases 21, 48.
Bashir, S., Sharma, Y., Elahi, A. and Khan, F. (2016). Macrophage polarization: the link between inflammation and related diseases. Inflammation Research 65, 111.
Bhattacharya, S., Ghosh, P., De, T., Gomes, A., Gomes, A. and Dungdung, S. R. (2013). In vivo and in vitro antileishmanial activity of Bungarus caeruleus snake venom through alteration of immunomodulatory activity. Experimental Parasitology 135, 126133.
Butler, M. S. (2008). Natural products to drugs: natural product-derived compounds in clinical trials. Natural Product Reports 25, 475.
Cassado, A. D. A., de Albuquerque, J. A. T., Sardinha, L. R., Buzzo, C. D. L., Faustino, L., Nascimento, R., Ghosn, E. E. B., Lima, M. R. D., Alvarez, J. M. M. and Bortoluci, K. R. (2011). Cellular renewal and improvement of local cell effector activity in peritoneal cavity in response to infectious stimuli. PLoS ONE 6, e22141.
Costa, E. S., Faiad, O. J., Landgraf, R. G., Ferreira, A. K., Brigatte, P., Curi, R., Cury, Y. and Sampaio, S. C. (2013). Involvement of formyl peptide receptors in the stimulatory effect of crotoxin on macrophages co-cultivated with tumour cells. Toxicon 74, 167178.
de Moura, A. A., Kayano, A. M., Oliveira, G. A., Setúbal, S. S., Ribeiro, J. G., Barros, N. B., Nicolete, R., Moura, L. A., Fuly, A. L., Nomizo, A., da Silva, S. L., Fernandes, C. F. C., Zuliani, J. P., Stábeli, R. G., Soares, A. M. and Calderon, L. A. (2014). Purification and biochemical characterization of three myotoxins from Bothrops mattogrossensis snake venom with toxicity against Leishmania and tumor cells. BioMed Research International 2014, 113.
de Vries, H. J. C., Reedijk, S. H. and Schallig, H. D. F. H. (2015). Cutaneous leishmaniasis: recent developments in diagnosis and management. American Journal of Clinical Dermatology 16, 99109.
Ding, A. H., Nathan, C. F. and Stuehr, D. J. (1988). Release of reactive nitrogen intermediates and reactive oxygen intermediate from mouse peritoneal macrophages: comparison of activating cytokines and evidence for independent production. Journal of Immunology 141, 2407.
Faiad, O. J. (2012). Efeito da Crotoxina Sobre Função e o Metabolismo de Glicose e Glutamina de Macrófagos Durante a Progressão Tumoral. Master's Dissertation, USP, São Paulo. doi: 10.11606/D.42.2012.tde-18042013-085640.
Fernández, O. L., Diaz-Toro, Y., Ovalle, C., Valderrama, L., Muvdi, S., Rodríguez, I., Gomez, M. A. and Saravia, N. G. (2014). Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia. PLoS Neglected Tropical Diseases 8, e2871.
Fotakis, G. and Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters 160, 171177.
Furtado, J. L., Oliveira, G. A.., Pontes, A. S., Setúbal, S. D. S., Xavier, C. V., Lacouth-Silva, F., Lima, B. F., Zaqueo, K. D., Kayano, A. M., Calderon, L. A., Stábeli, R. G., Soares, A. M. and Zuliani, J. P. (2014). Activation of J77A.1 macrophages by three phospholipases A2 isolated from Bothrops atrox snake venom. BioMed Research International 2014, 13.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
Liu, Y.-C., Zou, X.-B., Chai, Y.-F. and Yao, Y.-M. (2014). Macrophage polarization in inflammatory diseases. International Journal of Biological Sciences 10, 520529.
Lôbo de Araújo, a. and Radvanyi, F. (1987). Determination of phospholipase A2 activity by a colorimetric assay using a pH indicator. Toxicon 25, 11811188.
Macedo, S. R. A., de Barros, N. B., Ferreira, A. S., Moreira-Dill, L. S., Calderon, L. A., Soares, A. M. and Nicolete, R. (2015). Biodegradable microparticles containing crotamine isolated from Crotalus durissus terrificus display antileishmanial activity in vitro . Pharmacology 95, 7886.
Marcinkiewicz, C. (2013). Applications of snake venom components to modulate integrin activities in cell–matrix interactions. International Journal of Biochemistry & Cell Biology 45, 19741986.
McGwire, B. S. and Satoskar, A. R. (2014). Leishmaniasis: clinical syndromes and treatment. Qjm 107, 714.
Mosser, D. M. (2003). The many faces of macrophage activation. Journal of Leukocyte Biology 73, 209212.
Muhammad, I., Dunbar, D. C., Khan, S. I., Tekwani, B. L., Bedir, E., Takamatsu, S., Ferreira, D. and Walker, L. A. (2003). Antiparasitic alkaloids from Psychotria klugii . Journal of Natural Products 66, 962967.
Nunes, D. C. O., Figueira, M. M. N. R., Lopes, D. S., De Souza, D. L. N., Izidoro, L. F. M., Ferro, E. A. V., Souza, M. A., Rodrigues, R. S., Rodrigues, V. M. and Yoneyama, K. A. G. (2013). BnSP-7 toxin, a basic phospholipase A2 from Bothrops pauloensis snake venom, interferes with proliferation, ultrastructure and infectivity of Leishmania (Leishmania) amazonensis . Parasitology 140, 844854.
Passero, L. F. D., Tomokane, T. Y., Corbett, C. E. P., Laurenti, M. D. and Toyama, M. H. (2007). Comparative studies of the anti-leishmanial activity of three Crotalus durissus ssp. venoms. Parasitology Research 101, 13651371.
Passero, L. F. D., Laurenti, M. D., Tomokane, T. Y., Corbett, C. E. P. and Toyama, M. H. (2008). The effect of phospholipase A2 from Crotalus durissus collilineatus on Leishmania (Leishmania) amazonensis infection. Parasitology Research 102, 10251033.
Peichoto, M. E., Tavares, F. L., DeKrey, G. and Mackessy, S. P. (2011). A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: identification of a protein with inhibitory activity against the parasite. Toxicon 58, 2834.
Pereira, B. A. S. and Alves, C. R. (2008). Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis . Veterinary Parasitology 158, 239255.
Podinovskaia, M. and Descoteaux, A. (2015). Leishmania and the macrophage: a multifaceted interaction. Future Microbiology 10, 111129.
Quintana, J. C., Chacón, A. M., Vargas, L., Segura, C., Gutiérrez, J. M. and Alarcón, J. C. (2012). Antiplasmodial effect of the venom of Crotalus durissus cumanensis, crotoxin complex and Crotoxin B. Acta Tropica 124, 126132.
Rangel-Santos, A., Dos-Santos, E., Lopes-Ferreira, M., Lima, C., Cardoso, D. and Mota, I. (2004). A comparative study of biological activities of crotoxin and CB fraction of venoms from Crotalus durissus terrificus, Crotalus durissus cascavella and Crotalus durissus collilineatus . Toxicon 43, 801810.
Rath, M., Müller, I., Kropf, P., Closs, E. I. and Munder, M. (2014). Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Frontiers in Immunology 5, 110.
Rotureau, B., Morales, M. a., Bastin, P. and Späth, G. F. (2009). The flagellum-mitogen-activated protein kinase connection in Trypanosomatids: a key sensory role in parasite signalling and development? Cellular Microbiology 11, 710718.
Sampaio, S., Brigatte, P., Sousa-e-Silva, M. C., dos-Santos, E., Rangel-Santos, A., Curi, R. and Cury, Y. (2003). Contribution of crotoxin for the inhibitory effect of Crotalus durissus terrificus snake venom on macrophage function. Toxicon 41, 899907.
Sampaio, S. C., Rangel-Santos, A. C., Peres, C. M., Curi, R. and Cury, Y. (2005). Inhibitory effect of phospholipase A2 isolated from Crotalus durissus terrificus venom on macrophage function. Toxicon 45, 671676.
Sampaio, S. C., Santos, M. F., Costa, E. P., Rangel-Santos, A. C., Carneiro, S. M., Curi, R. and Cury, Y. (2006 a). Crotoxin induces actin reorganization and inhibits tyrosine phosphorylation and activity of small GTPases in rat macrophages. Toxicon 47, 909919.
Sampaio, S. C., Alba-Loureiro, T. C., Brigatte, P., Landgraf, R. G., dos Santos, E. C., Curi, R. and Cury, Y. (2006 b). Lipoxygenase-derived eicosanoids are involved in the inhibitory effect of Crotalus durissus terrificus venom or crotoxin on rat macrophage phagocytosis. Toxicon 47, 313321.
Schepetkin, I. A., Khlebnikov, A. I., Kirpotina, L. N. and Quinn, M. T. (2015). Antagonism of human formyl peptide receptor 1 with natural compounds and their synthetic derivatives. International Immunopharmacology.
Setubal, S. S., Pontes, A. S., Furtado, J. L., Kayano, A. M., Stábeli, R. G. and Zuliani, J. P. (2011). Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C. Journal of Venomous Animals and Toxins including Tropical Diseases 17, 430441.
Silveira, F. T., Lainson, R., Gomes, C. M. C., Laurenti, M. D. and Corbett, C. E. P. (2009). Immunopathogenic competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in American cutaneous leishmaniasis. Parasite Immunology 31, 423431.
Sokol, R. J., Hudson, G., James, N. T., Frost, I. J. and Wales, J. (1987). Human macrophage development: a morphometric study. Journal of Anatomy 151, 2735.
Torres, A. F. C., Dantas, R. T., Toyama, M. H., Filho, E. D., Zara, F. J., Rodrigues de Queiroz, M. G., Pinto Nogueira, N. A., Rosa de Oliveira, M., de Oliveira Toyama, D., Monteiro, H. S. A. and Martins, A. M. C. (2010). Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: phospholipase A2 and l-amino acid oxidase. Toxicon 55, 795804.
Ueno, N. and Wilson, M. E. (2012). Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival. Trends in Parasitology 28, 335344.
Venturin, G. L., Chiku, V. M., Silva, K. L. O., de Almeida, B. F. M. and de Lima, V. M. F. (2016). M1 polarization and the effect of PGE2 on TNF-α production by lymph node cells from dogs with visceral leishmaniasis. Parasite Immunology 38, 698704.
Xuan, W., Qu, Q., Zheng, B., Xiong, S. and Fan, G.-H. (2015). The chemotaxis of M1 and M2 macrophages is regulated by different chemokines. Journal of Leukocyte Biology 97, 6169.
Zhou, Y., Zhang, T., Wang, X., Wei, X., Chen, Y., Guo, L., Zhang, J. and Wang, C. (2015). Curcumin modulates macrophage polarization through the inhibition of the toll-like receptor 4 expression and its signaling pathways. Cellular Physiology and Biochemistry 36, 631641.

Keywords

Crotoxin stimulates an M1 activation profile in murine macrophages during Leishmania amazonensis infection

  • L. H. S. FARIAS (a1) (a2), A. P. D. RODRIGUES (a2) (a3), E. C. COÊLHO (a1), M. F. SANTOS (a4), S. C. SAMPAIO (a5) (a6) and E. O. SILVA (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed