Skip to main content Accessibility help

An in silico structure-based approach to anti-infective drug discovery



In light of the low success rate of target-based genomics and HTS (High Throughput Screening) approaches in anti-infective drug discovery, in silico structure-based drug design (SBDD) is becoming increasingly prominent at the forefront of drug discovery. In silico SBDD can be used to identify novel enzyme inhibitors rapidly, where the strength of this approach lies with its ability to model and predict the outcome of protein-ligand binding. Over the past 10 years, our group have applied this approach to a diverse number of anti-infective drug targets ranging from bacterial D-ala-D-ala ligase to Plasmodium falciparum DHODH. Our search for new inhibitors has produced lead compounds with both enzyme and whole-cell activity with established on-target mode of action. This has been achieved with greater speed and efficiency compared with the more traditional HTS initiatives and at significantly reduced cost and manpower.


Corresponding author

*Corresponding author. School of Chemistry, University of Leeds, Leeds, UK. Tel: +44 (0)113 3436510. Fax: +44 (0) 113 343 6565 E-mail:


Hide All
Agarwal, A. K., Johnson, A. P. and Fishwick, C. W. G. (2008). Synthesis of de novo designed small-molecule inhibitors of bacterial RNA polymerase. Tetrahedron 64, 1004910054. doi:
Bedingfield, P. T., Cowen, D., Acklam, P., Cunningham, F., Parsons, M. R., McConkey, G. A., Fishwick, C. W. and Johnson, A. P. (2012). Factors influencing the specificity of inhibitor binding to the human and malaria parasite dihydroorotate dehydrogenases. Journal of Medicinal Chemistry 55, 58415850. doi: 10.1021/jm300157n.
Besong, G. E., Bostock, J. M., Stubbings, W., Chopra, I., Roper, D. I., Lloyd, A. J., Fishwick, C. W. G. and Johnson, A. P. (2005). A de novo designed inhibitor of D-ala–D-ala ligase from E. coli. Angewandte Chemie International Edition 44, 64036406. doi: 10.1002/anie.200501662.
Bruneau, J.-M., Yea, C. M., Spinella-Jaegle, S., Fudali, C., Woodward, K., Robson, P. A., Sautes, C., Westwood, R., Kuo, E. A., Williamson, R. A. and Ruuth, E. (1998). Purification of human dihydroorotate dehydrogenase and its Inhibition by A77–1726, the active metabolite of leflunomide. Biochemical Journal 336, 5.
Calderón, F., Barros, D., Bueno, J. M., Coterón, J. M., Fernández, E., Gamo, F. J., Lavandera, J. L., León, M. L., Macdonald, S. J. F., Mallo, A., Manzano, P., Porras, E., Fiandor, J. M. and Castro, J. (2011). An invitation to open innovation in malaria drug discovery. ACS Medicinal Chemistry Letters 2, 741746. doi: 10.1021/ml200135p.
Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A. and Darst, S. A. (2001). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901912.
Chopra, I. (2007). Bacterial RNA Polymerase: a promising target for the discovery of new antimicrobial agents. Current Opinion in Investgational Drugs 8, 600607.
Christopherson, R. I., Lyons, S. D. and Wilson, P. K. (2002). Inhibitors of de novo nucleotide biosynthesis as drugs. Accounts of Chemical Research 35, 961971. doi: 10.1021/ar0000509.
Coates, A. R. M., Halls, G. and Hu, Y. (2011). Novel classes of antibiotics or more of the same? British Journal of Pharmacology 163, 184194. doi: 10.1111/j.1476–5381.2011.01250.x.
Cramer, P., Bushnell, D. A. and Kornberg, R. D. (2001). Structural basis of transcription: RNA polymerase II at 2·8 Ångstrom resolution. Science 292, 18631876. doi: 10.1126/science.1059493.
Daubendiek, S. L., Ryan, K. and Kool, E. T. (1995). Rolling-circle RNA synthesis: circular oligonucleotides as efficient substrates for T7 RNA polymerase. Journal of the American Chemical Society 117, 78187819. doi: 10.1021/ja00134a032.
Davies, M., Heikkila, T., McConkey, A. G., Fishwick, C. W., Parsons, M. R. and Johnson, A. P. (2009). Structure-based design, synthesis and characterization of inhibitors of human and Plasmodium falciparum dihydroorotate dehydrogenases. Journal of Medicinal Chemistry 52, 11.
Fan, C., Moews, P., Walsh, C. and Knox, J. R. (1994). Vancomycin resistance: structure of D-alanine:D-alanine ligase at 2·3 A resolution. Science 266, 439443. doi: 10.1126/science.7939684.
Fang, J., Uchiumi, T., Yagi, M., Matsumoto, S., Amaoto, R., Takazaki, S., Yamaza, H., Nonaka, K. and Kang, D. (2012). Dihydroorotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction. Bioscience Reports 33, 217227. doi: 10.1042/BSR20120097.
Gillet, V. J., Newell, W., Mata, P., Myatt, G., Sike, S., Zsoldos, Z. and Johnson, A. P. (1994). SPROUT - Recent developments in the de novo design of molecules. Journal of Chemical Information and Computer Sciences 34, 207217. doi: 10.1021/ci00017a027.
Grant, J. A., Gallardo, M. A. and Pickup, B. T. (1996). A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape. Journal of Computational Chemistry 17, 16531666. doi: 10.1002/(sici)1096–987x(19961115)17:14<1653::aid-jcc7>;2-k.
Green, D. W. (2002). The bacterial cell wall as a source of antibacterial targets. Expert Opinion on Therapeutic Targets 6, 120. doi:10.1517/14728222.6.1.1.
Haque, T. S., Tadesse, S., Marcinkeviciene, J., Rogers, M. J., Sizemore, C., Kopcho, L. M., Amsler, K., Ecret, L. D., Zhan, D. L., Hobbs, F., Slee, A., Trainor, G. L., Stern, A. M., Copeland, R. A. and Combs, A. P. (2002). Parallel synthesis of potent, pyrazole-based inhibitors of Helicobacter pylori dihydroorotate dehydrogenase. Journal of Medicinal Chemistry 45, 46694678. doi: 10.1021/jm020112w.
Heikkila, T. (2007). Dihydroorotate dehydrogenases: biochemical characterisation and structure-based inhibitor development. In Biology, Vol. Doctor of Philosophy University of Leeds, Leeds.
Heikkila, T., Ramsey, C., Davies, M., Galtier, C., Stead, A. M., Johnson, A. P., Fishwick, C. W., Boa, A. N. and McConkey, G. A. (2007). Design and synthesis of potent inhibitors of the malaria parasite dihydroorotate dehydrogenase. Journal of Medicinal Chemistry 50, 186191. doi: 10.1021/jm060687j.
Heikkila, T., Thirumalairajan, S., Davies, M., Parsons, M. R., McConkey, A. G., Fishwick, C. W. and Johnson, A. P. (2006). The first de novo designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Bioorganic and Medicinal Chemistry Letters 16, 8892. doi: 10.1016/j.bmcl.2005.09.045.
Hines, V., Keys, L. D. and Johnston, M. (1986). Purification and properties of the bovine liver mitochondrial dihydroorotate dehydrogenase. Journal of Biological Chemistry 261, 13861392.
Huey, R., Morris, G. M., Olson, A. J. and Goodsell, D. S. (2007). A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry 28, 11451152. doi: 10.1002/jcc.20634.
Hurt, D. E., Widom, J. and Clardy, J. (2006). Structure of Plasmodium falciparum dihydroorotate dehydrogenase with a bound inhibitor. Acta crystallographica. Section D, Biological Crystallography. 62(Pt 3), 312323. doi: 10.1107/S0907444905042642.
Liu, S., Neidhardt, E. A., Grossman, T. H., Ocain, T. and Clardy, J. (2000). Structures of human dihydroorotate dehydrogenase in complex with antiproliferative agents. Structure 8, 9.
Livermore, D. M. (2011). Discovery research: the scientific challenge of finding new antibiotics. Journal of Antimicrobial Chemotherapy 66, 19411944. doi: 10.1093/jac/dkr262.
López-Vallejo, F., Giulianotti, M. A., Houghten, R. A. and Medina-Franco, J. L. (2012). Expanding the medicinally relevant chemical space with compound libraries. Drug Discovery Today 17, 718726. doi:
McPhillie, M. J., Trowbridge, R., Mariner, K. R., O'Neill, A. J., Johnson, A. P., Chopra, I. and Fishwick, C. W. G. (2011). Structure-based ligand design of novel bacterial RNA polymerase inhibitors. ACS Medicinal Chemistry Letters 2, 729734. doi: 10.1021/ml200087m.
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry 30, 27852791. doi: 10.1002/jcc.21256.
Mukhopadhyay, J., Das, K., Ismail, S., Koppstein, D., Jang, M., Hudson, B., Sarafianos, S., Tuske, S., Patel, J., Jansen, R., Irschik, H., Arnold, E. and Ebright, R. H. (2008). The RNA polymerase switch region is a target for inhibitors. Cell 135, 295307.
Olliaro, P. and Wells, T. N. (2009). The global portfolio of new antimalarial medicines under development. Clinical Pharmacology and Therapeutics 85, 584595. doi: 10.1038/clpt.2009.51.
Phillips, M. A., Gujjar, R., Malmquist, N. A., White, J., El Mazouni, F., Baldwin, J. and Rathod, P. K. (2008). Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. Journal of Medicinal Chemistry 51, 36493653. doi: 10.1021/jm8001026.
Seidler, J., McGovern, S. L., Doman, T. N. and Shoichet, B. K. (2003). Identification and prediction of promiscuous aggregating inhibitors among known drugs. Journal of Medicinal Chemistry 46, 44774486. doi: 10.1021/jm030191r.
Simmons, K. J., Chopra, I. and Fishwick, C. W. (2010). Structure-based discovery of antibacterial drugs. Nature Reviews Microbiology 8, 501510. doi: 10.1038/nrmicro2349.
Srivastava, A., Talaue, M., Liu, S., Degen, D., Ebright, R. Y., Sineva, E., Chakraborty, A., Druzhinin, S. Y., Chatterjee, S., Mukhopadhyay, J., Ebright, Y. W., Zozula, A., Shen, J., Sengupta, S., Niedfeldt, R. R., Xin, C., Kaneko, T., Irschik, H., Jansen, R., Donadio, S., Connell, N. and Ebright, R. H. (2011). New target for inhibition of bacterial RNA polymerase: ‘switch region’. Current Opinion in Microbiology 14, 532543. doi:
Stahl, M., Guba, W. and Kansy, M. (2006). Integrating molecular design resources within modern drug discovery research: the Roche experience. Drug Discovery Today 11, 326333. doi: 10.1016/j.drudis.2006.02.008.
Wenzel, R. P. and Edmond, M. B. (2000). Managing antibiotic resistance. New England Journal of Medicine 343, 19611963. doi: 10.1056/NEJM200012283432610.
White, N. (1999). Antimalarial drug resistance and combination chemotherapy. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 354, 739749. doi: 10.1098/rstb.1999.0426.
WHO (2011). World Malaria Report 2011. World Health Organisation, Geneva, Switzerland.
Zsoldos, Z., Reid, D., Simon, A., Sadjad, S. B. and Johnson, A. P. (2007). eHiTS: a new fast, exhaustive flexible ligand docking system. Journal of Molecular Graphics and Modelling 26, 198212. doi: 10.1016/j.jmgm.2006.06.002.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed