Skip to main content Accessibility help
×
Home

An assessment of mosquito collection techniques for xenomonitoring of anopheline-transmitted Lymphatic Filariasis in Ghana

  • Millicent Opoku (a1) (a2), Corrado Minetti (a1), Worlasi D. Kartey-Attipoe (a2), Sampson Otoo (a2), Joseph Otchere (a2), Bruno Gomes (a1), Dziedzom K. de Souza (a2) and Lisa J. Reimer (a1)...

Abstract

Monitoring vectors is relevant to ascertain transmission of lymphatic filariasis (LF). This may require the best sampling method that can capture high numbers of specific species to give indication of transmission. Gravid anophelines are good indicators for assessing transmission due to close contact with humans through blood meals. This study compared the efficiency of an Anopheles gravid trap (AGT) with other mosquito collection methods including the box and the Centres for Disease Control and Prevention gravid, light, exit and BioGent-sentinel traps, indoor resting collection (IRC) and pyrethrum spray catches across two endemic regions of Ghana. The AGT showed high trapping efficiency by collecting the highest mean number of anophelines per night in the Western (4.6) and Northern (7.3) regions compared with the outdoor collection methods. Additionally, IRC was similarly efficient in the Northern region (8.9) where vectors exhibit a high degree of endophily. AGT also showed good trapping potential for collecting Anopheles melas which is usually difficult to catch with existing methods. Screening of mosquitoes for infection showed a 0.80–3.01% Wuchereria bancrofti and 2.15–3.27% Plasmodium spp. in Anopheles gambiae. The AGT has shown to be appropriate for surveying Anopheles populations and can be useful for xenomonitoring for both LF and malaria.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An assessment of mosquito collection techniques for xenomonitoring of anopheline-transmitted Lymphatic Filariasis in Ghana
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An assessment of mosquito collection techniques for xenomonitoring of anopheline-transmitted Lymphatic Filariasis in Ghana
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An assessment of mosquito collection techniques for xenomonitoring of anopheline-transmitted Lymphatic Filariasis in Ghana
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Millicent Opoku, E-mail: milowuadj@yahoo.ca

References

Hide All
Agbolade, OM and Akinboye, DO (2005) Detection of microfilariae with counting chamber technique in some Nigerian rural communities. African Journal of Biotechnology 4(4), 367370.
Amuzu, H, Wilson, MD and Boakye, DA (2010) Studies of Anopheles gambiae sl (Diptera: Culicidae) exhibiting different vectorial capacities in lymphatic filariasis transmission in the Gomoa district, Ghana. Parasites & Vectors 3, 8585.
Boakye, DA, Wilson, MD, Appawu, MA and Gyapong, J (2004) Vector competence, for Wuchereria bancrofti, of the Anopheles populations in the Bongo district of Ghana. Annals of Tropical Medicine and Parasitology 98, 501508.
Brady, M (2014) Seventh meeting of the global alliance to eliminate lymphatic filariasis: reaching the vision by scaling up, scaling down, and reaching out. Parasites and Vectors 7(1), 46.
Bryan, JH, McMahon, P and Barnes, A (1990) Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 3. Uptake and damage to ingested microfilariae by Anopheles gambiae, An. arabiensis, An. merus and An. funestus in east Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 84(2), 265268.
Budge, PJ, Dorkenoo, AM, Sodahlon, YK, Fasuyi, OB and Mathieu, E (2014) Ongoing surveillance for lymphatic filariasis in Togo: assessment of alternatives and nationwide reassessment of transmission status. The American Journal of Tropical Medicine and Hygiene 90(1), 8995.
Burkot, T and Ichimori, K (2002) The PacELF programme: will mass drug administration be enough? Trends in Parasitology 18(3), 109115.
Chanteau, S, Luquiaud, P, Failloux, AB and Williams, SA (1994) Detection of Wuchereria bancrofti larvae in pools of mosquitoes by the polymerase chain reaction. Transactions of the Royal Society of Tropical Medicine and Hygiene 88(6), 665666.
Ciota, AT and Kramer, LD (2013) Vector-virus interactions and transmission dynamics of West Nile virus. Viruses 5(12), 30213047.
Derua, YA, Rumisha, SF, Batengana, BM, Max, DA, Stanley, G, Kisinza, WN and Mboera, LE (2017) Lymphatic filariasis transmission on Mafia Islands, Tanzania: evidence from xenomonitoring in mosquito vectors. PLOS Neglected Tropical Diseases 11(10), e0005938.
de Souza, D, Kelly-Hope, L, Lawson, B, Wilson, M and Boakye, D (2010) Environmental factors associated with the distribution of Anopheles gambiae ss in Ghana; an important vector of lymphatic filariasis and malaria. PLoS ONE 5(3), e9927.
de Souza, DK, Koudou, B, Kelly-Hope, LA, Wilson, MD, Bockarie, MJ and Boakye, DA (2012) Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis. Parasites & Vectors 5, 25.
de Souza, DK, Sesay, S, Moore, MG, Ansumana, R, Narh, CA, Kollie, K, Rebollo, MP, Koudou, BG, Korama, JB, Bolay, FK, Bocckarie, MJ and Boakye, DA (2014) No evidence for lymphatic filariasistransmission in big cities affected by conflict related rural-urban migration in Sierra Leone and Liberia. PLoS Neglected Tropical Diseases 8(2), e2700.
Detinova, TS (1962) Age grading methods in Diptera of medical importance with special reference to some vectors of malaria. World Health Organization (WHO) (Geneva, Switzerland) Monograph Series 47, 1216.
Dugassa, S, Lindh, JM, Oyieke, F, Mukabana, WR, Lindsay, SW and Fillinger, U (2013) Development of a gravid trap for collecting live malaria vectors Anopheles gambiae sl. PLoS ONE 8(7), e68948.
Echeverry, DF, Deason, NA, Makuru, V, Davidson, J, Xiao, H, Niedbalski, J, Yu, X, Stevenson, JC, Bugoro, H, Aparaimo, A, Reuben, H, Cooper, R, Burkot, TR, Russell, TL, Collins, FH and Lobo, NF (2017) Fast and robust single PCR for Plasmodium sporozoite detection in mosquitoes using the cytochrome oxidase I gene. Malaria Journal 16(1), 230.
Facchinelli, L, Koenraadt, CJM, Fanello, C, Kijchalao, U, Valerio, L, Jones, JW, Scott, TW and della Torre, A (2008) Evaluation of a sticky trap for collecting Aedes (Stegomyia) adults in a dengue-endemic area in Thailand. The American Journal of Tropical Medicine and Hygiene 78(6), 904909.
Fanello, C, Santolamazza, F and Della Torre, A (2002) Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Medical and Veterinary Entomology 16(4), 461464.
Farid, HA, Morsy, ZS, Helmy, H, Ramzy, RM, El Setouhy, M and Weil, GJ (2007) A critical appraisal of molecular xenomonitoring as a tool for assessing progress toward elimination of Lymphatic Filariasis. The American Journal of Tropical Medicine and Hygiene 77(4), 593600.
Gillies, MT and Coetzee, MA (1987). Supplement to the Anophelinae of Africa South of the Sahara. Johannesburg: South African Institute for Medical Research, pp. 1143.
Hapairai, LK, Plichart, C, Naseri, T, Silva, U, Tesimale, L, Pemita, P, Bossin, HC, Burkot, TR, Ritchie, SA, Graves, PM, Melrose, W and Joseph, H (2015) Evaluation of traps and lures for mosquito vectors and xenomonitoring of Wuchereria bancrofti infection in a high prevalence Samoan Village. Parasites and Vectors 8, 287.
Ichimori, K, King, JD, Engels, D, Yajima, A, Mikhailov, A, Lammie, P and Ottesen, EA (2014) Global programme to eliminate lymphatic filariasis: the processes underlying programme success. Plos Neglected Tropical Diseases 8(12), e3328.
Irish, SR, Moore, SJ, Derua, YA, Bruce, J and Cameron, MM (2013) Evaluation of gravid traps for the collection of Culex quinquefasciatus, a vector of lymphatic filariasis in Tanzania. Transactions of the Royal Society of Tropical Medicine and Hygiene 107(1), 1522.
Jiménez, M, González, LM, Carranza, C, Bailo, B, Pérez-Ayala, A, Muro, A, Pérez-Arellano, JL and Gárate, T (2011) Detection and discrimination of Loa loa, Mansonella perstans and Wuchereria bancrofti by PCR–RFLP and nested-PCR of ribosomal DNA ITS1 region. Experimental Parasitology 127(1), 282286.
Jones, CM, Machin, C, Mohammed, K, Majambere, S, Ali, AS, Khatib, BO, McHa, J, Banson, H and Kelly-Hope, LA (2012) Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasites & Vectors 5(1), 78.
Katholi, CR, Toe, L, Merriweather, A and Unnasch, TR (1995) Determining the prevalence of Onchocerca volvulus infection in vector populations by polymerase chain reaction screening of pools of black flies. Journal of Infectious Diseases 172, 14141417.
Kouassi, BL, de Souza, DK, Goepogui, A, Narh, CA, King, SA, Mamadou, BS, Diakité, L, Dadzie, SK, Boakye, DA, Utzinger, J, Bockarie, MJ and Koudou, BG (2015). Assessing the presence of Wuchereria bancrofti in vector and human populations from urban communities in Conakry, Guinea. Parasites and Vectors 8(1), 492.
L'Ambert, G, Ferré, J-B, Schaffner, F and Fontenille, D (2012) Comparison of different trapping methods for surveillance of mosquito vectors of West Nile virus in Rhône Delta, France. Journal of Vector Ecology 37, 269275, 269–275.
Lindh, JM, Dugassa, S, Lindsay, SW and Fillinger, U (2016) Field evaluation of two novel sampling devices for collecting wild oviposition site seeking malaria vector mosquitoes: OviART gravid traps and squares of electrocuting nets. Parasites and Vectors 9(1), 272.
Livak, KJ (1984) Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 107(4), 611634.
Lutomiah, JL, Koka, H, Mutisya, J, Yalwala, S, Muthoni, M, Makio, A, Limbaso, S, Musila, L, Clark, JW, Turell, MJ and Kioko, E (2011) Ability of selected Kenyan mosquito (Diptera: Culicidae) species to transmit West Nile virus under laboratory conditions. Journal of Medical Entomology 48(6), 11971201.
Mak, JW (2007) Epidemiology of lymphatic filariasis. In Evered D and Clark S (eds), Ciba Foundation Symposium 127-Filariasis. Bethesda MD, USA: John Wiley & Sons, Ltd., pp. 514. doi: 10.1002/9780470513446.ch2.
Mboera, LEG, Takken, W, Mdira, KY and Pickett, JA (2000) Sampling gravid Culex quinquefasciatus (Diptera: Culicidae) in Tanzania with traps baited with synthetic oviposition pheromone and grass infusions. Journal of Medical Entomology 37(1), 172176. doi: 10.1603/0022-2585-37.1.172.
McGreevy, PB, Bryan, JH, Oothuman, P and Kolstrup, N (1978) The lethal effects of the cibarial and pharyngeal armatures of mosquitoes on microfilariae. Transactions of the Royal Society of Tropical Medicine and Hygiene 72(4), 361368.
Molyneux, DH, Bradley, M, Hoerauf, A, Kyelem, D and Taylor, MJ (2003) Mass drug treatment for lymphatic filariasis and onchocerciasis. Trends in Parasitology 19(11), 516522.
Oduola, AO, Olojede, JB, Oyewole, IO, Otubanjo, OA and Awolola, TS (2013) Abundance and diversity of Anopheles species (Diptera: Culicidae) associated with malaria transmission in human dwellings in rural and urban communities in Oyo State, Southwestern Nigeria. Parasitology Research 112(10), 34333439.
Okorie, PN and de Souza, DK (2016) Prospects, drawbacks and future needs of xenomonitoring for the endpoint evaluation of lymphatic filariasis elimination programs in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 110(2), 9097.
Ottesen, EA (2006) Lymphatic filariasis: treatment, control and elimination. Advances in Parasitology 61, 395441.
Pederson, ME (2008) Vectors of lymphatic filariasis in Eastern and Southern Africa. In Simonsen, EP, Malecela, NM, Michael, E and Mackenzie, DC (eds), Lymphatic Filariasis Research and Control in Eastern and Southern Africa. Denmark: DBL-Centre for Health Research and Development, Kailow Graphics A/S, pp. 78110.
Springer, YP, Hoekman, D, Johnson, PT, Duffy, PA, Hufft, RA, Barnett, DT and Beard, CB (2016) Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere (Washington, DC) 7(5), e01271.
Stolk, WA, Swaminathan, S, Oortmarssen, GJV, Das, PK and Habbema, JDF (2003) Prospects for elimination of bancroftian filariasis by mass drug treatment in Pondicherry, India: a simulation study. The Journal of Infectious Diseases 188, 13711381.
Tabue, RN, Awono-Ambene, P, Etang, J, Atangana, J, Antonio-Nkondjio, C, Toto, JC, Patchoke, S, Leke, RG, Fondjo, E, Mnzava, AP, Knox, TB, Tougordi, A, Donnelly, MJ and Bigoga, JD (2017) Role of Anopheles (Cellia) rufipes (Gough, 1910) and other local anophelines in human malaria transmission in the northern savannah of Cameroon: a cross-sectional survey. Parasites & Vectors 10(1), 22.
Tuno, N, Kjaerandsen, J, Badu, K and Kruppa, T (2010) Blood-feeding behavior of Anopheles gambiae and Anopheles melas in Ghana, western Africa. Journal of Medical Entomology 47:2831.
Ughasi, J, Bekard, HE, Coulibaly, M, Adabie-Gomez, D, Gyapong, J, Appawu, M, Wilson, MD and Boakye, DA (2012) Mansonia africana and Mansonia uniformis are vectors in the transmission of Wuchereria bancrofti lymphatic filariasis in Ghana. Parasites & Vectors 5(1), 89.
Vazquez-Prokopec, GM, Spillmann, C, Zaidenberg, M, Kitron, U and Gürtler, RE (2009) Cost-effectiveness of Chagas disease vector control strategies in northwestern Argentina. PLoS Neglected Tropical Diseases 3(1), e363.
Wanji, S, Amvongo-Adjia, N, Koudou, B, Njouendou, AJ, Ndongmo, PWC, Kengne-Ouafo, JA, Datchoua-Poutcheu, FR, Foyennso, BA, Tayong, DB, Fombad, FF, Fischer, PU, Enyong, PI and Bockarie, M (2015) Cross-reactivity of filariais ICT cards in areas of contrasting endemicity of Loa loa and Mansonella perstans in Cameroon: implications for shrinking of the lymphatic filariasis map in the Central African Region. PLoS Neglected Tropical Diseases 9(11), e0004184.
Williams, GM and Gingrich, JB (2007) Comparison of light traps, gravid traps, and resting boxes for West Nile virus surveillance. Journal of Vector Ecology 32(2), 285291.
World Health Organisation (2011) Monitoring and Epidemiological Assessment of Mass Drug Administration in the Global Programme to Eliminate Lymphatic Filariasis: A Manual for National Elimination Programmes. (WHO/HTM/NTD/PCT/2011.4). Geneva, Switzerland: World Health Organization.
World Health Organisation (2015) Global programme to eliminate lymphatic filariasis: progress report, 2014. Weekly Epidemiological Record 90, 489504.
World Health Organization (2016) Global Programme to Eliminate Lymphatic Filariasis: Progress Report, 2015. Geneva, Switzerland: World Health Organization.
World Health Organization (2017) Togo: First Country in sub-Saharan Africa to Eliminate Lymphatic Filariasis. Brazzaville, Geneva: World Health Organization.

Keywords

An assessment of mosquito collection techniques for xenomonitoring of anopheline-transmitted Lymphatic Filariasis in Ghana

  • Millicent Opoku (a1) (a2), Corrado Minetti (a1), Worlasi D. Kartey-Attipoe (a2), Sampson Otoo (a2), Joseph Otchere (a2), Bruno Gomes (a1), Dziedzom K. de Souza (a2) and Lisa J. Reimer (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed