Skip to main content Accessibility help

The alcohol dehydrogenase with a broad range of substrate specificity regulates vitality and reproduction of the plant-parasitic nematode Bursaphelenchus xylophilus

  • Linsong Wang (a1), Tingting Zhang (a1), Zhengsong Pan (a2), Lulu Lin (a1), Guoqing Dong (a1), Min Wang (a1) and Ronggui Li (a1)...


Pine wilt disease, which is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, has caused huge damage to pine forests around the world. In this study, we analysed the PWN transcriptome to investigate the expression of genes related to the associated bacterial species Pseudomonas fluorescens and found that the gene adh-1 encoding alcohol dehydrogenase (ADH) was upregulated. The open reading frame of adh-1, which encoded a protein of 352 amino acid residues, was cloned from B. xylophilus. Recombinant ADH with a relative molecular weight of 39 kDa, was present mainly in inclusion bodies and was overexpressed in Escherichia coli BL21 (DE3) and purified after refolding. The biochemical assay revealed that recombinant ADH could catalyse the dehydrogen reaction of eight tested alcohols including ethanol in the presence of NAD+. Quantitative real-time RT-PCR analysis indicated that ethanol upregulated adh-1 expression in PWN. Results of RNA interference and inhibition of ADH treatment indicated that downregulating expression of adh-1 or inhibition of ADH could reduce ethanol tolerance and the vitality and reproduction ability of B. xylophilus, suggesting that adh-1 is involved in pathogenicity of PWN.


Corresponding author

Author for correspondence: Ronggui Li, E-mail:


Hide All
Artyukhin, AB, Yim, JJ, Mi, CC and Avery, L (2015) Starvation-induced collective behavior in C. elegans. Scientific Reports 5, 10647.
Battistella, M (2002) Fomepizole as an antidote for ethylene glycol poisoning. Annals of Pharmacotherapy 36, 1085.
Braasch, H, Tomiczek, CH, Metge, K, Hoyer, U, Burgermeister, W, Wulfert, I and Schönfeld, U (2001) Records of Bursaphelenchus spp. (Nematoda, Parasitaphelenchidae) in coniferous timber imported from the Asian part of Russia. Forest Pathology 31, 129140.
Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248254.
Cho, JY and Jeffries, TW (1998) Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Applied and Environmental Microbiology 64, 13501358.
Davies, AG, Blackwell, GG, Raabe, RC and Bettinger, JC (2015) An assay for measuring the effects of ethanol on the locomotion speed of Caenorhabditis elegans. Journal of Visualized Experiments Jove 98, e52681e52681.
Espada, M, Silva, AC, Sebastian, EVDA, Cock, PJA, Mota, M and Jones, JT (2016 a) Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy. Molecular Plant Pathology 17, 286295.
Espada, M, Jones, JT and Mota, M (2016 b) Characterization of glutathione S-transferases from the plant-parasitic nematode, Bursaphelenchus xylophilus. Nematology 18, 697709.
Gao, Y, Yuan, DJ, Li, RG, Guo, DS, Ju, YW, Lin, F, Ye, JL and Zhao, BG (2014) Nutritional substances for mutualistic symbiosis between Busaphelenchus xylophilus and its associated bacterium, Pseudomonas fluorescens GcM5-1A isolate. Nematology 16, 283288.
Guo, QQ, Du, GC, Qi, HT, Zhang, YN, Yue, TQ, Wang, JC and Li, RG (2017) A nematicidal tannin from Punica granatum L. rind and its physiological effect on pine wood nematode (Bursaphelenchus xylophilus). Pesticide Biochemistry and Physiology 135, 6468.
Han, ZM, Hong, YD and Zhao, BG (2003) A study on pathogenicity of bacteria carried by pine wood nematodes. Journal of Phytopathology 151, 683689.
Hasegawa, K and Miwa, J (2008) Embryology and cytology of Bursaphelenchus xylophilus. In Zhao, BG, Futai, K, Sutherland, JR and Takeuchi, Y (eds), Pine Wilt Disease. Tokyo, Japan: Springer, pp. 81104.
Ikeda, T and Oda, K (1980) The occurrence of attractiveness for Monochamus alternatus Hope (Coleoptera: Cerambycidae) in nematode-infected pine trees. Journal of the Japanese Forestry Society 62, 432434.
Kiyohara, T and Tokushige, Y (1971) Inoculation experiments of a nematode, Bursaphelenchus sp., ontopine trees. Journal of the Japanese Forestry Society 53, 210218.
Kuroda, K (1991) Mechanism of cavitation development in the pine wilt disease. Forest Pathology 21, 8289.
Kuroda, K and Ito, SI (1992) Migration speed of pine wood nematodes and activities of other microbes during the development of pine-wilt disease in Pinus thunbergii. Journal of the Japanese Forestry Society 74, 383389.
Lin, YP, He, P, Wang, QH, Lu, DJ, Li, ZL, Wu, CS and Jiang, N (2010) The alcohol dehydrogenase system in the xylose-fermenting yeast Candida maltosa. PLoS ONE 5, e11752.
Liu, GH, Feng, K, Guo, DS and Li, RG (2015) Overexpression and activities of 1-cys peroxiredoxin from Pseudomonas fluorescens GcM5-1A carried by pine wood nematode. Folia Microbiologica 60, 443450.
Liu, QH, Wei, YC, Xu, LY, Hao, YP, Chen, XL and Zhou, ZC (2017) Transcriptomic profiling reveals differentially expressed genes associated with pine wood nematode resistance in masson pine (Pinus massoniana lamb.). Scientific Reports 7, 4693.
Lu, NC, Hugenberg, G, Briggs, GM and Stokstad, EL (1978) The growth-promoting activity of several lipid-related compounds in the free-living nematode Caenorhabditis briggsae. Proceedings of the Society for Experimental Biology and Medicine 158, 187191.
Mamiya, Y (1983) Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus. Annual Review of Phytopathology 21, 201220.
Mota, MM, Braasch, H, Bravo, MA, Penas, AC, Burgermeister, W, Metge, K and Sousa, E (1999) First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1, 727734.
Mota, MM, Takemoto, S, Takeuchi, Y, Hara, N and Futai, K (2006) Comparative studies between Portuguese and Japanese isolates of the pinewood nematode, Bursaphelenchus xylophilus. Journal of Nematology 38, 429433.
Mukae, SY, Ohashi, T, Matsumoto, Y, Ohta, S and Ômura, H (2016) D-Pinitol in Fabaceae: an oviposition stimulant for the common grass yellow butterfly, Eurema mandarina. Journal of Chemical Ecology 42, 11221129.
Nascimento, FX, Hasegawa, K, Mota, M and Vicente, CS (2015) Bacterial role in pine wilt disease development-review and future perspectives. Environmental Microbiology Reports 7, 5163.
Oku, H (1988) Role of phytotoxins in pine wilt diseases. Journal of Nematology 20, 245251.
Palomaresrius, JE, Tsai, IJ, Karim, N, Akiba, M, Kato, T, Maruyama, H, Takeuchi, Y and Kikuchi, T (2015) Genome-wide variation in the pinewood nematode Bursaphelenchus xylophilus and its relationship with pathogenic traits. BMC Genomics 16, 845.
Persson, B, Hedlund, J and Jornvall, H (2008) The MDR superfamily. Cellular and Molecular Life Sciences 65, 38793894.
Proença, DN, Grass, G and Morais, PV (2017) Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiologyopen 6, e00415.
Pullman, GS and Buchanan, M (2008) Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiology 28, 985996.
Qiu, XW, Wu, XQ, Huang, L and Ye, JR (2016) Influence of bxpel1 gene silencing by dsRNA interference on the development and pathogenicity of the pine wood nematode, Bursaphelenchus xylophilus. International Journal of Molecular Sciences 17, 125.
Reid, MF and Fewson, CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Critical Reviews in Microbiology 20, 1356.
Shuto, Y and Watanabe, H (1988) Stimulating effect of ethanol on oviposition of the pine wood nematode. Agricultural and Biological Chemistry 52, 29272928.
Vicente, CS, Ikuyo, Y, Mota, M and Hasegawa, K (2013) Pinewood nematode-associated bacteria contribute to oxidative stress resistance of Bursaphelenchus xylophilus. BMC Microbiology 13, 18.
Wang, M, Wang, DD, Zhang, X, Wang, X, Liu, WC, Hou, XM, Huang, XY, Xie, BY and Cheng, XY (2016) Double-stranded RNA-mediated interference of dumpy genes in Bursaphelenchus xylophilus by feeding on filamentous fungal transformants. International Journal for Parasitology 46, 351360.
Williamson, VM, Long, M and Theodoris, G (1991) Isolation of Caenorhabditis elegans mutants lacking alcohol dehydrogenase activity. Biochemical Genetics 29, 313323.
Wu, XQ, Yuan, WM, Tian, XJ, Fan, B, Fang, X, Ye, JR and Ding, XL (2013) Specific and functional diversity of endophytic bacteria from pine wood nematode Bursaphelenchus xylophilus with different virulence. International Journal of Biological Sciences 9, 3444.
Xu, XL, Wu, XQ, Ye, JR and Huang, L (2015) Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea). International Journal of Molecular Sciences 16, 52165234.
Zhao, BG, Wang, HL, Han, SF and Han, ZM (2003) Distribution and pathogenicity of bacteria species carried by Bursaphelenchus xylophilus in China. Nematology 5, 899906.
Zhao, BG, Liu, Y and Lin, F (2007) Effects of bacteria associated with pine wood nematode (Bursaphelenchus xylophilus) on development and egg production of the nematode. Journal of Phytopathology 155, 2630.
Zhao, BG, Tao, J, Ju, YW, Wang, PK and Ye, JL (2011) The role of wood-inhabiting bacteria in pine wilt disease. Journal of Nematology 43, 129134.
Zhou, FY, Lou, QZ, Wang, B, Xu, LT, Cheng, CH, Lu, M and Sun, JH (2016) Altered carbohydrates allocation by associated bacteria-fungi interactions in a bark beetle-microbe symbiosis. Scientific Reports 6, 20135.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed