Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T15:37:50.427Z Has data issue: false hasContentIssue false

Adhesion of Trichomonas vaginalis to plastic surfaces: requirement for energy and serum constituents

Published online by Cambridge University Press:  06 April 2009

D. Gold
Affiliation:
Department of Human Microbiology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel69978
I. Ofek
Affiliation:
Department of Human Microbiology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel69978

Extract

The ability of Trichomonas vaginalis to adhere to plastic surfaces in the presence of various agents and under different growth conditions was examined in wells of microtitre plates containing unsupplemented TYI medium or the same, with various supplements. Following incubation, the wells were thoroughly washed and adhesion was determined by microscopic counting of the adherent organisms. There was no detectable adhesion in the absence of both serum and carbohydrate. Optimal adhesion (about 10–20% of the total number of parasites) was obtained throughout the growth curve in culture media supplemented with either serum or serum Cohn fractions IV–I (rich in α-globulin) or IV-4 (rich in α + β-globulin) and 25 mM glucose, maltose or fructose, but not in plates pre-coated with the Cohn fractions. Cohn fraction II + III (rich in β + γ-globulin) moderately enhanced adhesion while Cohn fractions II (rich in γ-globulin) or V (albumin), fibronectin, Tamm-Horsfall glycoproteins and polylysine were without effect. Non-metabolizable sugars (methyl derivatives of glucose, mannose or fucose) did not support growth, but, surprisingly, enhanced adhesion. At 4 °C, the trichomonads were not able to adhere and pre-adherent organisms detached from the plastic surface. Optimal adhesion was obtained at a pH range of 6·5–7·5 but was already detectable at pH 5·5. Cytochalasin E markedly suppressed adhesion. The data taken together suggest that the firm, serum-dependent adhesion of T. vaginalis to plastic surfaces is apparently not influenced by the rate of multiplication, requires energy and the binding by the organisms of certain serum proteins, which possibly enhances their hydrophobic interaction with the plastic substratum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alderete, J. F., Demes, P., Gombosova, A., Valent, M., Fabusova, M., Janoska, A., Stefanovic, J. & Arroyo, R. (1988). Specific parasitism of purified epithelial cells by Trichomonas vaginalis. Infection and Immunity 56, 2558–62.CrossRefGoogle ScholarPubMed
Alderete, J. F. & Garza, G. E. (1985). Specific nature of Trichomonas vaginalis parasitism of host cells surfaces. Infection and Immunity 50, 701–8.CrossRefGoogle Scholar
Alderete, J. F. & Garza, G. E. (1988). Identification and properties of Trichomonas vaginalis proteins involved in cytadherence. Infection and Immunity 56, 2833.CrossRefGoogle ScholarPubMed
Alderete, J. F. & Pearlman, E. (1984). Pathogenic Trichomonas vaginalis cytotoxicity to cell culture monolayers. British Journal of Venereal Diseases 60, 99105.Google ScholarPubMed
Bromke, B. J. (1986). A serum-free, lipid supplemented medium for the growth of Trichomonas vaginalis. Journal of Microbiological Methods 6, 55–9.CrossRefGoogle Scholar
Cappuccinelli, P., Cagliani, I. & Cavallo, G. (1973). Mechanism of Trichomonas vaginalis adhesion to surfaces. In Progress in Protozoology (ed. de Puytorac, P. & Grain, J.), pp. 7783. Clermont-Ferrand.Google Scholar
Cappuccinelli, P. & Varesio, L. (1975). The effect of cytochalasin B, colchicine and vinblastine on the adhesion of Trichomonas vaginalis to glass surfaces. International Journal for Parasitology 5, 5761.CrossRefGoogle ScholarPubMed
Corbell, L. B., Hodgson, J. L., Jones, D. W., Corbeil, R. R., Widders, P. R. & Stephens, L. R. (1989). Adherence of Trichomonas foetus to vaginal epithelial cells. Infection and Immunity 57, 2158–65.CrossRefGoogle Scholar
Demes, P., Gombosova, A., Surmikova, E. & Ruzickova, M. (1988). Differential lectin-mediated agglutinability of Trichomonas vaginalis. Biologia (Bratislava) 43, 989–92.Google Scholar
Diamond, L. S., Harlow, D. R. & Cunnick, C. C. (1978). A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 431–2.CrossRefGoogle ScholarPubMed
Farthing, M. J. G., Pereira, M. E. A. & Keusch, G. T. (1986). Description and characterization of a surface lectin from Giardia lamblia. Infection and Immunity 51, 661–6.CrossRefGoogle ScholarPubMed
Feldner, J., Bredt, w. & Razin, S. (1981). Role of energy metabolism in Mycoplasma pneumoniae attachment to glass surfaces. Infection and Immunity 31, 107–13.CrossRefGoogle ScholarPubMed
Gold, D., Bos, H. J., Diamantstein, T. & Hahn, H. (1982). On culture of Entamoeba histolytica in plastic tissue culture flasks. Zeitschrift für Parasitenkunde 67, 341–4.CrossRefGoogle ScholarPubMed
Hahn, E. L. H. & Yamada, K. M. (1979). Isolation and biological characterization of active fragments of the adhesive glycoprotein fibronectin. Cell 18, 1043–51.CrossRefGoogle ScholarPubMed
Honigberg, B. M., Stabler, R. M., Livingston, M. C. & Kulda, J. (1970). Further observations on the effects of various laboratory procedures on the virulence of Trichomonas gallinae for pigeons. Journal of Parasitology 56, 701–8.CrossRefGoogle Scholar
Hoyer, J. R. & Seiler, M. W. (1979). Pathophysiology of Tamm–Horsfall protein. Kidney International 16, 279–89.CrossRefGoogle ScholarPubMed
Klotz, S. A. (1990). Role of hydrophobic interactions in microbial adhesion to plastics used in medical devices. In Microbial Cell Surface Hydrophobicity (ed. Doyle, R. J. & Rosenberg, M.), pp. 107–36. Washington D.C.: American Society for Microbiology.Google Scholar
Kobiler, D. & Mirelman, D. (1980). Lectin activity in Entamoeba histolytica trophozoites. Infection and Immunity 29, 221–5.CrossRefGoogle ScholarPubMed
Kolmer, J. A. (1961). Clinical Diagnosis by Laboratory Examinations, 3rd Edn.New York: Appleton–Century–Crofts Inc.Google Scholar
Krieger, J. N., Ravdin, J. I. & Rein, M. F. (1985). Contact-dependent cytopathic mechanisms of Trichomonas vaginalis. Infection and Immunity 50, 778–86.CrossRefGoogle Scholar
Linstead, D. (1981). New defined and semi-defined media for cultivation of the flagellate Trichomonas vaginalis. Parasitology 83, 125–37.CrossRefGoogle ScholarPubMed
Lumsden, W. H. R., Robertson, D. H. H. & McNeillage, G. J. C. (1966). Isolation, cultivation, low temperature preservation and infectivity of Trichomonas vaginalis. British Journal of Venereal Diseases 42, 145–54.Google ScholarPubMed
Omer, E. E., El-Naeem, H. A., Ali, M. H., Catterall, R. D. & Erwa, H. H. (1985). Effects of Trichomonas vaginalis on the pH and glycogen content of the vagina. Ethiopian Medical Journal 23, 173–7.Google Scholar
Peterson, K. M. & Alderete, J. F. (1982). Host plasma proteins on the surface of pathogenic Trichomonas vaginalis. Infection and Immunity 37, 755–62.CrossRefGoogle ScholarPubMed
Peterson, K. M. & Alderete, J. F. (1984). Trichomonas vaginalis is dependent on uptake and degradation of human low-density lipoproteins. Journal of Experimental Medicine 160, 1261–72.CrossRefGoogle ScholarPubMed
Pindak, F. F., Gardner, W. A. Jr, De Pindak, M. M. & Abee, C. R. (1987). Detection of haemagglutinins in culture of squirrel monkey intestinal trichomonads. Journal of Clinical Microbiology 25, 609–14.CrossRefGoogle ScholarPubMed
Rosenberg, M. & Doyle, R. J. (1990). Microbial cell surface hydrophobicity: history, measurement and significance. In Microbial Cell Surface Hydrophobicity, (ed. Doyle, R. J. & Rosenberg, M.), pp. 137. Washington, D.C.: American Society for Microbiology.Google Scholar
Schenkman, S., Robbins, E. S. & Nussenzweig, V. (1991). Attachment of Trypanosoma cruzi to mammalian cells requires parasite energy, and invasion can be independent of the target cell cytoskeleton. Infection and Immunity 59, 645–54.CrossRefGoogle ScholarPubMed
Silva Filho, F. C., De Souza, W. & Lopes, J. D. (1988). Presence of laminin-binding proteins in trichomonads and their role in adhesion. Proceedings of the National Academy of Sciences, USA 85, 8042–6.CrossRefGoogle Scholar
Tada, M. & Mori, Y. (1987). Opsonin independent phagocytosis of periodate-treated sheep and blood cells by macrophages. Chemical and Pharmaceutical Bulletin 35, 2470–7.CrossRefGoogle ScholarPubMed
Thomas, D. D., Baseman, J. B., Alderete, J. F. (1985). Fibronectin mediates Treponema pallidum cytoadherence through recognition of fibronectin cell-binding domain. Journal of Experimental Medicine 161, 514–25.CrossRefGoogle Scholar
Warton, A. & Honigberg, B. M. (1980). Lectin analysis of surface saccharides in two Trichomonas vaginalis strains differing in pathogenicity. Journal of Protozoology 27, 410–19.CrossRefGoogle ScholarPubMed
Yamada, K. M. & Olden, K. (1978). Fibronectins, adhesive glycoproteins of cell surface and blood. Nature, London 275, 179–84.CrossRefGoogle ScholarPubMed