Skip to main content Accessibility help

Article contents

Schistosoma mansoni host–parasite relationship: interaction of contrapsin with adult worms

Published online by Cambridge University Press:  06 April 2009

J. Modha
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ
M. J. Doenhoff
School of Biological Sciences, University College of North Wales, Bangor, Gwynedd LL57 2UW


Contrapsin, a serine protease inhibitor (serpin) present in mouse serum, was compared with that found in adult Schistosoma mansoni worm homogenates, which although immunologically identical to contrapsin in mouse serum, had a higher molecular weight in Western blotting. Immunolocalization studies demonstrated parasite-associated contrapsin on the surface and interstitial cells of adult male worms. After extraction of these parasites with Triton X-114, contrapsin was found in the aqueous phase of the detergent, suggesting it is unlikely to be an integral membrane protein. Treatment of adult worms with deoxycholate resulted in a change in the electrophoretic behaviour of worm-derived contrapsin. Parallel studies with trypsin suggested this was due to interaction of the serpin with a protease. Using porcine pancreatic trypsin as a model for a putative schistosome protease reacting with contrapsin, we have shown that trypsin, following complex formation with contrapsin, loses immunogenicity. Thus, when contrapsin–trypsin complexes were used as immunogen, the resulting antisera contained antibodies to contrapsin and contrapsin–trypsin complexes only, and none to native trypsin. Thus, epitopes characterizing native trypsin were presumably either masked following complex formation with contrapsin, or their processing and presentation to antigen presenting cells was suppressed, so that an antibody response was not mounted against them. These observations encourage speculation that S. mansoni may be elaborating an immune evasion strategy whereby immunologically sensitive proteases are first complexed with host serpins, which would render them immunogenically inert, and then cleared from the circulation by the host's reticulo-endothelial system. In this way the immune system would be unable to ‘see’ sensitive parasite proteases sufficiently to mount a response against the parasite.

Research Article
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below.


Amiri, P., Locksley, R. M., Parsow, T. G., Sadick, M., Rector, E., Ritter, D. & McKerrow, J. H. (1992). Tumour necrosis factor restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature, London 356, 604–7.CrossRefGoogle ScholarPubMed
Baumstark, J. S. (1967). Studies on the elastase–serum protein interaction. 1. Molecular identity of the inhibitors in human serum and direct demonstration of the inhibitor–elastase complexes by zone and immunoelectrophoresis. Archives of Biochemistry and Biophysics 118, 619–30.CrossRefGoogle Scholar
Bordier, C. (1981). Phase separation of integral membrane proteins in Triton X-114. Journal of Biological Chemistry 256, 1604–7.Google ScholarPubMed
Bradford, M. M. (1976). A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–54.CrossRefGoogle ScholarPubMed
Clegg, J. A., Smithers, S. R. & Terry, R. J. (1971). Acquisition of human antigens by S. mansoni during cultivation in vitro. Nature, London 232, 653–4.CrossRefGoogle Scholar
Colley, D. G. & Nix, N. A. (1992). Do schistosomes exploit the host pro-inflammatory cytokine TNFα for their own survival? Parasitology Today 11, 355–7.CrossRefGoogle Scholar
Damian, R. T., Greene, N. D. & Hubbard, W. J. (1973). Occurrence of mouse alpha-2-macroglobulin antigenic determinants on Schistosoma mansoni adults, with evidence on their nature. Journal of Parasitology 59, 6773.CrossRefGoogle Scholar
Doenhoff, M. J., Hassounah, O. A. & Lucas, S. B. (1985). Does the immunpathology induced by schistosome eggs potentiate parasite survival? Immunology Today 6, 203–6.CrossRefGoogle Scholar
Doenhoff, M. J., Musallam, R., Bain, J. & McGregor, A. (1978). Studies on the host–parasite relationship on S. mansoni-infected mice: the immunological dependence of parasite egg excretion. Immunology 35, 771–8.Google Scholar
Dresden, M. H. (1982). Proteolytic enzymes of Schistosoma mansoni. Acta Leidensia 49, 8199.Google ScholarPubMed
Dunne, D. W., Agnew, A. M., Modha, J. & Doenhoff, M. J. (1986). Schistosoma mansoni egg antigens: preparation of rabbit antisera with monospecific immunoprecipitating activity, and their use in antigen characterization. Parasite Immunology 8, 575–86.CrossRefGoogle ScholarPubMed
Harrison, R. & Doenhoff, M. J. (1983). Retarded development of Schistosoma mansoni in immunosuppressed mice. Parasitology 86, 429–38.CrossRefGoogle ScholarPubMed
Helenius, A. & Simons, K. (1975). Solubilization of membranes by detergents. Biochimica et Biophysica Acta 415, 2979.CrossRefGoogle ScholarPubMed
Hill, R. E., Shaw, P. H., Boyd, P. A., Baumann, H. & Hastie, N. D. (1984). Plasma protease inhibitors in mouse and man: divergence within the reactive centre regions. Nature, London 311, 175–7.CrossRefGoogle ScholarPubMed
Kemp, W. M., Damian, R. T., Green, N. D. & Lushbaugh, W. B. (1976). Immunocytochemical localization of mouse alpha-2-macroglobulin-like antigenic determinants on Schistosoma mansoni adults. Journal of Parasitology 62, 413–19.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Mast, A. E., Enghild, J. J., Pizzo, S. V. & Salvesen, G. (1991). Analysis of the plasma elimination kinetics and conformational stabilities of native, proteinase-complexed, and reactive-site cleaved serpins: comparison of α1-antichymotrypsin, antithrombin III, α1-antiplasmin, angiotensinogen and ovalbumin. Biochemistry 30, 1723–30.CrossRefGoogle Scholar
McKerrow, J. H. (1987). Workshop summary: The role of proteases in the pathogenesis and immune response to parasitic disease. In Molecular Strategies of Parasitic Invasion (ed. Agabian, N., Goodman, H. & Nogueira, N.), pp. 553–57. London: Alan R. Liss.Google Scholar
McKerrow, J. H. & Doenhoff, M. J. (1988). Schistosome proteases. Parasitology Today 4, 334–40.CrossRefGoogle ScholarPubMed
McKerrow, J. H., Pino-Heiss, S., Lindquist, R. & Werb, Z. (1985). Purification and characterization of an elastinolytic proteinase secreted by cercariae of Schistosoma mansoni. Journal of Biological Chemistry 260, 3703–7.Google ScholarPubMed
McLaren, D. J. & Terry, R. J. (1982). The protective role of acquired host antigens during schistosome infection. Parasite Immunology 4, 129–48.CrossRefGoogle Scholar
Modha, J., Parikh, V., Gauldie, J. & Doenhoff, M. J. (1988). An association between schistosomes and contrapsin, a mouse serine protease inhibitor (serpin). Parasitology 96, 99109.CrossRefGoogle Scholar
Nathoo, S., Rasums, A., Katz, J., Ferguson, W. S. & Finlay, T. H. (1982). Purification and properties of two different α1-protease inhibitors from mouse plasma. Archives of Biochemistry and Biophysics 219, 306–15.CrossRefGoogle Scholar
Neugebauer, J. (1990). A Guide to the Properties and Uses of Detergents in Biology and Biochemistry. Calbiochem Biochemicals booklet: Calbiochem Corporation (La Jolla, California).Google Scholar
Ouchterlony, O. (1958). Diffusion in gel methods for immunological analysis. Progress in Allergy 5, 178.Google ScholarPubMed
Perlmutter, D. H., Glover, G. I., Rivetna, M., Schasteen, C. S. & Fallon, R. J. (1990 a). Identification of a serpinenzyme complex receptor on human hepatoma cells and human monocytes. Proceedings of the National Academy of Sciences, USA 87, 3753–7.CrossRefGoogle ScholarPubMed
Perlmutter, D. H., Joslin, G., Nelson, P., Schasteen, C., Adams, S. P. & Fallon, R. J. (1990 b). Endocytosis and degradation of α1-antitrypsin-protease complexes is mediated by the serpin-enzyme complex (SEC) receptor. Journal of Biological Chemistry 265, 16713–16.Google ScholarPubMed
Pryde, J. G. (1986). Triton X-114: a detergent that has come in from the cold. Trends in Biochemical Sciences 11, 160–3.CrossRefGoogle Scholar
Smithers, S. R. & Terry, R. J. (1965). The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of adult worms. Parasitology 55, 695700.CrossRefGoogle ScholarPubMed
Smithers, S. R., Terry, R. J. & Hockley, D. J. (1969). Host antigens in schistosomiasis. Proceedings of the Royal Society of London, B171, 483–94.CrossRefGoogle ScholarPubMed
Takahara, H. & Sinohara, H. (1982). Mouse plasma trypsin inhibitors: Isolation and characterization of α1-antitrypsin and contrapsin, a novel trypsin inhibitor. Journal of Biological Chemistry 257, 2438–46.Google Scholar
Takahara, H. & Sinohara, H. (1983). Inhibitory spectrum of mouse contrapsin and α1-antitrypsin against mouse serine proteases. Journal of Biochemistry 93, 1411–19.CrossRefGoogle Scholar
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle ScholarPubMed
Toy, L., Petitt, M., Wang, Y. F., Hedstrom, R. & McKerrow, J. H. (1987). Molecular Paradigms for Eradicating Helminthic Parasites. London: Alan R. Liss.Google Scholar
Travis, J. & Salvesen, G. S. (1983). Human plasma proteinase inhibitors. Annual Reviews in Biochemistry 52, 655709.CrossRefGoogle ScholarPubMed
Watts, C. & Lanzavecchia, A. (1993). Suppressive effect of antibody on processing of T cell epitopes. Journal of Experimental Medicine 178, 1459–63.CrossRefGoogle ScholarPubMed
Wieme, R. J. (1959). An approved technique for agar-gel electrophoresis on agar-gel microscopic slides. Clinica Chimica Acta 4, 317–21.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 2 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 29th November 2020. This data will be updated every 24 hours.

Hostname: page-component-8465588854-jh7c5 Total loading time: 0.576 Render date: 2020-11-29T23:42:04.851Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sun Nov 29 2020 23:36:09 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Schistosoma mansoni host–parasite relationship: interaction of contrapsin with adult worms
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Schistosoma mansoni host–parasite relationship: interaction of contrapsin with adult worms
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Schistosoma mansoni host–parasite relationship: interaction of contrapsin with adult worms
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *