Skip to main content Accessibility help
×
Home

Article contents

Novel polymorphic microsatellite loci in Anisakis pegreffii and A. simplex (s. s.) (Nematoda: Anisakidae): implications for species recognition and population genetic analysis

Published online by Cambridge University Press:  28 June 2019

Simonetta Mattiucci
Affiliation:
Department of Public Health and Infectious Diseases, Section of Parasitology, “Sapienza -University of Rome”, Laboratory affiliated to “Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy” P.le Aldo Moro, 5 00185 Rome, Italy
Eleonora Bello
Affiliation:
Department of Ecological and Biological Sciences, Tuscia University, Viale dell'Università s/n 01100 Viterbo, Italy
Michela Paoletti
Affiliation:
Department of Ecological and Biological Sciences, Tuscia University, Viale dell'Università s/n 01100 Viterbo, Italy
Steve C. Webb
Affiliation:
Cawthron Institute, Nelson, New Zealand
Juan T. Timi
Affiliation:
Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
Arne Levsen
Affiliation:
Institute of Marine Research, Bergen, Norway
Paolo Cipriani
Affiliation:
Institute of Marine Research, Bergen, Norway
Giuseppe Nascetti
Affiliation:
Department of Ecological and Biological Sciences, Tuscia University, Viale dell'Università s/n 01100 Viterbo, Italy
Corresponding

Abstract

The species of Anisakis constitute one of the most widespread groups of ascaridoid nematodes in the marine ecosystem. Three closely related taxa are recognised in the A. simplex (s. l.) complex, i.e. A. pegreffii, A. simplex (s. s.) and A. berlandi. They are distributed in populations of their intermediate/paratenic (fish and squids) and definitive (cetaceans) hosts. A panel of seven microsatellite loci (Anisl 05784, Anisl 08059, Anisl 00875, Anisl 07132, Anisl 00314, Anisl 10535 and Anisl 00185), were developed and validated on a total of N = 943 specimens of A. pegreffii and A. simplex (s. s.), collected in fish and cetacean hosts from allopatric areas within the range of distribution of these parasite species. In addition, the locus Anisl 7, previously detected in those Anisakis spp., was investigated. The parasites were first identified by sequence analysis of the EF1 α-1 nDNA. The panel of the microsatellites loci here developed have allowed to: (i) detect diagnostic microsatellite loci between the two species; (ii) identify specimens of the two species A. pegreffii, A. simplex (s. s.) in a multi-marker nuclear genotyping approach; (iii) discover two sex-linked loci in both Anisakis species and (iv) estimate levels of genetic differentiation at both the inter- and intra-specific level.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Baldwin, RE, Rew, MB, Johansson, ML, Banks, MA and Jacobson, KC (2011) Population structure of three species of Anisakis nematodes recovered from Pacific sardines (Sardinops sagax) distributed throughout the California Current System. Journal of Parasitology 97, 545554. doi.org/10.1645/GE-2690.1.CrossRefGoogle ScholarPubMed
Betson, M, Halstead, FD, Nejsum, P, Imison, E, Khamis, IS, Sousa-Figueiredo, JC, Rollinson, D and Stothard, JR (2011) A molecular epidemiological investigation of Ascaris on Unguja, Zanzibar using isoenyzme analysis, DNA barcoding and microsatellite DNA profiling. Transactions of the Royal Society of Tropical Medicine and Hygiene 105, 370379. doi.org/10.1016/j.trstmh.2011.04.009.CrossRefGoogle ScholarPubMed
Blažeković, K, Pleić, IL, Đuras, M, Gomerčić, T and Mladineo, I (2015) Three Anisakis spp. isolated from toothed whales stranded along the eastern Adriatic Sea coast. International Journal for Parasitology 45, 1731. doi.org/10.1016/j.ijpara.2014.07.012.CrossRefGoogle ScholarPubMed
Buchmann, K and Mehrdana, F (2016) Effects of anisakid nematodes Anisakis simplex (s. l.), Pseudoterranova decipiens (s. l.) and Contracaecum osculatum (s. l.) on fish and consumer health. Food and Waterborne Parasitology 4, 1322. doi.org/10.1016/j.fawpar.2016.07.003.CrossRefGoogle Scholar
Cavallero, S, Nadler, SA, Paggi, L, Barros, NB and D'Amelio, S (2011) Molecular characterization and phylogeny of anisakid nematodes from cetaceans from southeastern Atlantic coasts of USA, Gulf of Mexico and Caribbean Sea. Parasitology Research 108, 781792.CrossRefGoogle ScholarPubMed
Chai, JY, Murrell, KD and Lymbery, AJ (2005) Fish-borne parasitic zoonoses: status and issues. International Journal for Parasitology 35, 12331254. doi.org/10.1016/j.ijpara.2005.07.013.CrossRefGoogle ScholarPubMed
Cole, R and Viney, M (2018) The population genetics of parasitic nematodes of wild animals. Parasites & Vectors 11, 590. doi.org/10.1186/s13071-081-3137-5.CrossRefGoogle ScholarPubMed
Criscione, CD and Blouin, MS (2007) Parasite phylogeographycal congruence with salmon host evolutionarily significant units: implications for salmon conservation. Molecular Ecology 16, 9931005.CrossRefGoogle ScholarPubMed
Criscione, CD, Cooper, B and Blouin, MS (2006) Parasite genotypes identify source populations of migratory fish more accurately than fish genotypes. Ecology 87, 823827.CrossRefGoogle ScholarPubMed
Criscione, CD, Anderson, JD, Raby, K, Sudimack, D, Subedi, J, Rai, DR, Upadhayay, RP, Jha, B, Williams-Blangero, S and Anderson, TJ (2007) Microsatellite markers for the human nematode parasite Ascaris lumbricoides: development and assessment of utility. Journal of Parasitology 93, 704708. doi.org/10.1645/GE-1058R.1.CrossRefGoogle ScholarPubMed
D'Amelio, S, Mathiopoulos, KD, Santos, CP, Pugachev, ON, Webb, SC, Picanḉo, M and Paggi, L (2000) Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (nematoda: Ascaridoidea) defined by polymerase chain reaction-based restriction fragment length polymorphism. International Journal for Parasitology 30, 223226. doi.org/10.1016/S0020-7519(99)00178-2.CrossRefGoogle ScholarPubMed
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620. doi.org/10.1111/j.1365-294X.2005.02553.x.CrossRefGoogle ScholarPubMed
Excoffier, L and Lischer, HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567. doi.org/10.1111/j.1755-0998.2010.02847.x.CrossRefGoogle ScholarPubMed
Felsenstein, J (1993) PHYLIP: Phylogeny Inference Package. Seattle, WA: University of Washington.Google Scholar
Glenn, TC, Lance, ST, McKee, AM, Webster, BL, Emery, AM, Zerlotini, A, Oliveira, G, Rollinson, D and Faircloth, BC (2013) Significant variance in genetic diversity among populations of Schistosoma haematobium detected using microsatellite DNA loci from a genome-wide database. Parasites and Vectors 6, 300. doi.org/10.1186/1756-3305-6-300.CrossRefGoogle ScholarPubMed
González, AF, Gracia, J, Miniño, I, Romón, J, Larsson, C, Maroto, J, Regueira, M and Pascual, S (2018) Approach to reduce the zoonotic parasite load in fish stocks: when science meets technology. Fisheries Research 202, 140148. doi.org/10.1016/j.fishres.2017.08.016.CrossRefGoogle Scholar
Goudet, J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86, 485486.CrossRefGoogle Scholar
Greeff, JM, Reid, K, Gagjee, JR, Clift, SJ and de Waal, PJ (2018) Population genetic structure of the parasitic nematode Spirocerca lupi in South Africa. Veterinary Parasitology 258, 6469. doi.org/10.1016/vet.par.2018.06.007.CrossRefGoogle ScholarPubMed
Grillo, V, Jackson, F and Gilleard, JS (2006) Characterisation of Teladorsagia circumcincta microsatellites and their development as population genetic markers. Molecular and Biochemical Parasitology 148, 181189. doi.org/10.1016/j.molbiopara.2006.03.014.CrossRefGoogle ScholarPubMed
Guardone, L, Armani, A, Nucera, D, Costanzo, F, Mattiucci, S and Bruschi, F (2018) Human anisakiasis in Italy: a retrospective epidemiological study over two decades. Parasité 25, 41.CrossRefGoogle ScholarPubMed
Howe, KL, Bolt, BJ, Cain, S, Chan, J, Chen, WJ, Davis, P, Done, J, Down, T, Gao, S, Grove, C, Harris, TW, Kishore, R, Lee, R, Lomax, J, Li, Y, Muller, HM, Nakamura, C, Nuin, P, Paulini, M, Raciti, D, Schindelman, G, Stanley, E, Tuli, MA, Van Auken, K, Wang, D, Wang, X, Williams, G, Wright, A, Yook, K, Berriman, M, Kersey, P, Schedl, T, Stein, L and Sternberg, PW (2016) Wormbase 2016: expanding to enable helminth genomic research. Nucleic Acids Research 44, D774D780. doi.org/10.1093/nar/gkv1217.CrossRefGoogle ScholarPubMed
Johnson, PC, Webster, LM, Adam, A, Buckland, R, Dawson, DA and Keller, LF (2006) Abundant variation in microsatellites of the parasitic nematode Trichostrongylus tenuis and linkage to a tandem repeat. Molecular and Biochemical Parasitology 148, 210218. doi.org/10.1016/j.molbiopara.2006.04.011.CrossRefGoogle ScholarPubMed
Larkin, MA, Blackshields, G, Brown, NP, Chenna, R, McGettigan, PA, McWilliam, H, Valentin, F, Wallace, IM, Wilm, A, Lopez, R, Thompson, JD, Gibson, TJ and Higgins, DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23, 29472948.CrossRefGoogle ScholarPubMed
Levsen, A, Svanevik, CS, Cipriani, P, Mattiucci, S, Gay, M, Hastiee, LC, Pierce, GJ, Bušelić, I, Mladineo, I, Karl, O, Ostermeyer, U, Buchmann, K, Højgaard, DP, González, AF and Pascual, S (2018) A survey of zoonotic nematodes of commercial key fish species from major European fishing grounds – introducing the FP7 PARASITE exposure assessment study. Fisheries Research 202, 421. doi.org/10.1016/j.fishres.2017.09.009.CrossRefGoogle Scholar
Lowe, AJ, Jones, AE, Raybould, AF, Trick, M, Moule, CL and Edwards, KJ (2002) Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Molecular Ecology Notes 2, 711.CrossRefGoogle Scholar
Mattiucci, S and Nascetti, G (2007) Genetic diversity and infection levels of anisakid nematodes parasitic in fish and marine mammals from Boreal and Austral hemispheres. Veterinary Parasitology 148, 4357. doi.org/10.1016/j.vetpar.2007.05.009.CrossRefGoogle ScholarPubMed
Mattiucci, S and Nascetti, G (2008) Advances and trends in the molecular systematics of Anisakis nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Advances in Parasitology 66, 47148. doi.org/10.1016/S0065-308X(08)00202-9.CrossRefGoogle ScholarPubMed
Mattiucci, S, Nascetti, G, Cianchi, R, Paggi, L, Arduino, P, Margolis, L, Brattey, J, Webb, SC, D'Amelio, S, Orecchia, P and Bullini, L (1997) Genetic and ecological data on the Anisakis simplex complex with evidence for a new species (Nematoda, Ascaridoidea, Anisakidae). Journal of Parasitology 83, 401416.CrossRefGoogle Scholar
Mattiucci, S, Cipriani, P, Webb, SC, Paoletti, M, Marcer, F, Bellisario, B, Gibson, DI and Nascetti, G (2014) Genetic and morphological approaches distinguishing the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae). Journal of Parasitology 15, 1215. doi.org/10.1645/12-120.1.Google Scholar
Mattiucci, S, Acerra, V, Paoletti, M, Cipriani, P, Levsen, A, Webb, SC, Canestrelli, D and Nascetti, G (2016) No more time to stay ‘single’ in the detection of Anisakis pegreffii, A. simplex (s. s.) and hybridization events between them: a multi-marker nuclear genotyping approach. Parasitology 143, 9981011. doi.org/10.1017/S0031182016000330.CrossRefGoogle Scholar
Mattiucci, S, Paoletti, M, Colantoni, A, Carbone, A, Gaeta, R, Proietti, A, Frattaroli, S, Fazii, P, Bruschi, F and Nascetti, G (2017) Invasive anisakiasis by the parasite Anisakis pegreffii (Nematoda: Anisakidae): diagnosis by Real-time PCR hydrolysis probe system and Immunoblotting assay. BMC Infectious Diseases 17, 530. doi.org/10.1186/s12879-017-2633-0.CrossRefGoogle ScholarPubMed
Mattiucci, S, Cipriani, P, Levsen, A, Paoletti, M and Nascetti, G (2018a) Molecular epidemiology of Anisakis and anisakiasis: an ecological and evolutionary road map. In Advances in Parasitology, 99, 93263. doi.org/10.1016/bs.apar.2017.12.001.Google Scholar
Mattiucci, S, Giulietti, L, Paoletti, M, Cipriani, P, Gay, M, Levsen, A, Paoletti, M and Nascetti, G (2018b) Population genetic structure of the parasite Anisakis simplex (s. s.) collected in Clupea harengus L. from North East Atlantic fishing grounds. Fisheries Research 202, 103111. doi.org/10.1016/j.fishres.2017.08.002.CrossRefGoogle Scholar
Mladineo, I, Trumbić, Ž, Radonić, I, Vrbatović, A, Hrabar, J and Bušelić, I (2017) Anisakis simplex complex: ecological significance of recombinant genotypes in an allopatric area of the Adriatic Sea inferred by genome-derived simple sequence repeats. International Journal for Parasitology 47, 215223. doi.org/10.1016/j.ijpara.2016.11.003.CrossRefGoogle Scholar
Müller, F and Tobler, H (2000) Chromatin diminution in the parasitic nematodes Ascaris suum and Parascaris univalens. International Journal for Parasitology 30, 391399. doi.org/10.1016/S0020-7519(99)00199-X.CrossRefGoogle ScholarPubMed
Nascetti, G, Paggi, L, Orecchia, P, Smith, JW, Mattiucci, S and Bullini, L (1986) Electrophoretic studies on Anisakis simplex complex (Ascaridida: Anisakidae) from the Mediterranean and North East Atlantic. International Journal for Parasitology 16, 633640. doi.org/10.1016/0020-7519(86)90032-9.CrossRefGoogle ScholarPubMed
Nei, M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583590.Google ScholarPubMed
Oksanen, J, Blanchet, FG, Friendly, M, Kindt, R, Legendre, P, McGlinn, D, Minchin, PR, O'Hara, RB, Simpson, GL, Solymos, P, Stevens, MH, Szoecs, E and Wagner, H (2019) Vegan: Community Ecology Package. R package version 2.5-4.Google Scholar
Patrelle, C, Jouet, D, Lehrter, V and Ferté, H (2014) Development of 12 novel polymorphic microsatellite markers using a next generation sequencing approach for Spiculopteragia spiculoptera, a nematode parasite of deer. Molecular and Biochemical Parasitology 196, 122125. doi.org/10.1016/j.molbiopara.2014.09.004.CrossRefGoogle ScholarPubMed
Pritchard, JK, Stephens, M and Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945959.Google ScholarPubMed
Rabelo, ÉML, de Miranda, RRC, Furtado, LFV, Redondo, RAF, Tennessen, JA and Blouin, MS (2017) Development of new microsatellites for the hookworm Ancylostoma caninum and analysis of genetic diversity in Brazilian populations. Infection, Genetics and Evolution 51, 2427. doi.org/10.1016/j.meegid.2017.03.008.CrossRefGoogle ScholarPubMed
Redman, E, Packard, E, Grillo, V, Smith, J, Jackson, F and Gilleard, JS (2008) Microsatellite analysis reveals marked genetic differentiation between Haemonchus contortus laboratory isolates and provides a rapid system of genetic fingerprinting. International Journal for Parasitology 38, 111122. doi.org/10.1016/j.ijpara.2007.06.008.CrossRefGoogle ScholarPubMed
Reid, K, Hoareau, TB and Bloomer, P (2012) High-throughput microsatellite marker development in two sparid species and verification of their transferability in the family Sparidae. Molecular Ecology Resources 12, 740752. doi.org/10.1111/j.1755-0998.2012.03138.x.CrossRefGoogle ScholarPubMed
Rice, WR (1989) Analyzing tables of statistical tests. Evolution 43, 223225. doi.org/10.1111/j.1558-5646.1989.tb04220.x.CrossRefGoogle ScholarPubMed
Sambrook, J and Russell, DW (2001) Molecular cloning: a laboratory manual (3rd edition). Immunology 49, 895909.Google Scholar
Selkoe, KA and Toonen, RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters 9, 615629. doi.org/10.1111/j.1461-0248.2006.00889.x.CrossRefGoogle ScholarPubMed
Swofford, DL and Selander, RBA (1997) BIOSYS 2. A Computer Program for the Analysis of Allelic Variation Genetics. Urbana, IL: University of Illinois.Google Scholar
Temperley, ND, Webster, LM, Adam, A, Keller, LF and Johnson, PC (2009) Cross-species utility of microsatellite markers in Trichostrongyloid nematodes. Journal of Parasitology 95, 487489. doi.org/10.1645/GE-1624.1.CrossRefGoogle ScholarPubMed
Umehara, A, Kawakami, Y, Araki, J and Uchida, A (2007) Molecular identification of the etiological agent of the human anisakiasis in Japan. Parasitology International 56, 211215. doi.org/10.1016/j.parint.2007.02.005.CrossRefGoogle Scholar
Valentini, A, Mattiucci, S, Bondanelli, P, Webb, SC, Mignucci-Giannone, A, Colom-Llavina, MM and Nascetti, G (2006) Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. Journal of Parasitology 92, 156166. doi.org/10.1645/GE-3504.1.CrossRefGoogle ScholarPubMed
Van Oosterhout, C, Hutchinson, WF, Wills, DP and Shipley, P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538. doi.org/10.1111/j.1471-8286.2004.00684.x.CrossRefGoogle Scholar
Weir, BC and Cockerham, CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
Zarlenga, DS, Hoberg, E, Rosenthal, B, Mattiucci, S and Nascetti, G (2014) Anthropogenics: human influence on global and genetic homogenization of parasite populations. Journal of Parasitology 100, 756772. doi.org/10.1645/14-622.1.CrossRefGoogle ScholarPubMed

Mattiucci et al. supplementary material

Figure S1

Image 1 MB

Mattiucci et al. supplementary material

Figure S2

Image 477 KB

Mattiucci et al. supplementary material

Table S1

File 107 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 8
Total number of PDF views: 131 *
View data table for this chart

* Views captured on Cambridge Core between 28th June 2019 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-wphb9 Total loading time: 0.294 Render date: 2021-01-26T16:07:10.963Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Novel polymorphic microsatellite loci in Anisakis pegreffii and A. simplex (s. s.) (Nematoda: Anisakidae): implications for species recognition and population genetic analysis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Novel polymorphic microsatellite loci in Anisakis pegreffii and A. simplex (s. s.) (Nematoda: Anisakidae): implications for species recognition and population genetic analysis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Novel polymorphic microsatellite loci in Anisakis pegreffii and A. simplex (s. s.) (Nematoda: Anisakidae): implications for species recognition and population genetic analysis
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *