Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.311 Render date: 2021-03-02T11:50:36.437Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Leishmaniasis and various immunotherapeutic approaches

Published online by Cambridge University Press:  15 December 2016

Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran


Leishmaniasis is a vector-borne infectious disease caused by multiple Leishmania (L.) species with diverse clinical manifestations. There is currently no vaccine against any form of the disease approved in humans, and chemotherapy is the sole approach for treatment. Unfortunately, treatment options are limited to a small number of drugs, partly due to high cost and significant adverse effects. The other obstacle in leishmaniasis treatment is the potential for drug resistance, which has been observed in multiple endemic countries. Immunotherapy maybe another important avenue for controlling leishmaniasis and could help patients control the disease. There are different approaches for immunotherapy in different infectious diseases, generally with low-cost, limited side-effects and no possibility to developing resistance. In this paper, different immunotherapy approaches as alternatives to routine drug treatment will be reviewed against leishmaniasis.

Special Issue Review
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.


Yasaman Taslimi and Farnaz Zahedifard have contributed equally as first co-authors.


Balasegaram, M., Ritmeijer, K., Lima, M. A., Burza, S., Ortiz Genovese, G., Milani, B., Gaspani, S., Potet, J. and Chappuis, F. (2012). Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opinion on Emerging Drugs 17, 493510.CrossRefGoogle ScholarPubMed
Barroso, P. A., Marco, J. D., Calvopina, M., Kato, H., Korenaga, M. and Hashiguchi, Y. (2007). A trial of immunotherapy against Leishmania amazonensis infection in vitro and in vivo with Z-100, a polysaccharide obtained from Mycobacterium tuberculosis, alone or combined with meglumine antimoniate. Journal of Antimicrobial Chemotherapy 59, 11231129.CrossRefGoogle ScholarPubMed
Bodas, M., Jain, N., Awasthi, A., Martin, S., Loka, R. K. P., Dandekar, D., Mitra, D. and Saha, B. (2006). Inhibition of IL-2 induced IL-10 production as a principle of phase-specific immunotherapy. Journal of Immunology 177, 46364643.CrossRefGoogle ScholarPubMed
Borja-Cabrera, G. P., Santos, F. N., Santos, F. B., Trivellato, F. A., Kawasaki, J. K., Costa, A. C., Castro, T., Nogueira, F. S., Moreira, M. A., Luvizotto, M. C., Palatnik, M. and Palatnik-de-Sousa, C. B. (2010). Immunotherapy with the saponin enriched-Leishmune® vaccine versus immunochemotherapy in dogs with natural canine visceral leishmaniasis. Vaccine 28, 597603.CrossRefGoogle Scholar
Breton, M., Tremblay, M. J., Ouellette, M. and Papadopoulou, B. (2005). Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infection and Immunity 73, 63726382.CrossRefGoogle ScholarPubMed
Bustos, M. F. G., Barrio, A. B., Ramoneda, C. M. P., Ramos, F., Mora, M. C., Convit, J. and Basombrío, M. A. (2011). Immunological correlates of cure in the first American cutaneous leishmaniasis patient treated by immunotherapy in Argentina. A case report. Investigación Clínica, 52, 365375.Google Scholar
Cabrera, M., Castes, M., Trujillo, D., Convit, J. and Shaw, M. A. (2000). Immunotherapy with live BCG plus heat killed Leishmania induces a T helper 1-like response in American cutaneous leishmaniasis patients. Parasite Immunology 22, 7379.CrossRefGoogle Scholar
Castellano, L. R., Argiro, L., Dessein, H., Dessein, A., da Silva, M. V., Correia, D. and Rodrigues, V. (2015). Potential use of interleukin-10 blockade as a therapeutic strategy in human cutaneous leishmaniasis. Journal of Immunology Research 2015, 15.CrossRefGoogle ScholarPubMed
Chawla, B., Jhingran, A., Panigrahi, A., Stuart, K. D. and Madhubala, R. (2011). Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin–susceptible–resistant Leishmania donovani. PLoS ONE 6, e26660.CrossRefGoogle ScholarPubMed
Convit, J., Ulrich, M., Zerpa, O., Borges, R., Aranzazu, N., Valera, M., Villarroel, H., Zapata, Z. and Tomedes, I. (2003). Immunotherapy of American cutaneous leishmaniasis in Venezuela during the period 1990–1999. Transactions of the Royal Society of Tropical Medicine and Hygiene 97, 469472.CrossRefGoogle Scholar
de Castro, M. C. A. B. and Pereira, V. R. A. (2014). Dendritic cell-based approaches in the fight against diseases. Frontiers in Immunology 5, 78.Google Scholar
Dey, R., Meneses, C., Salotra, P., Kamhawi, S., Nakhasi, H. L. and Duncan, R. (2010). Characterization of a Leishmania stage-specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulence. Molecular Microbiology 77, 399414.CrossRefGoogle ScholarPubMed
Dorlo, T. P., Balasegaram, M., Beijnen, J. H. and de Vries, P. J. (2012). Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy 67, 25762597.CrossRefGoogle ScholarPubMed
Ehrlich, A., Castilho, T. M., Goldsmith-Pestana, K., Chae, W.-J., Bothwell, A. L., Sparwasser, T. and McMahon-Pratt, D. (2014). The immunotherapeutic role of regulatory T cells in Leishmania (Viannia) panamensis infection. Journal of Immunology 193, 29612970.CrossRefGoogle ScholarPubMed
El-On, J. (2009). Current status and perspectives of the immunotherapy of leishmaniasis. The Israel Medical Association Journal: IMAJ 11, 623628.Google ScholarPubMed
Faezi, F. (2015). Partial Immunotherapy of Leishmaniasis by in vivo trial of L-arginine in Balb/c mice infected with Leishmania major via nitric oxide pathway. International Journal of Biological Chemistry 9, 110122.Google Scholar
Faleiro, R. J., Kumar, R., Bunn, P. T., Singh, N., Chauhan, S. B., Sheel, M., Amante, F. H., de Oca, M. M., Edwards, C. L. and Ng, S. S. (2016). Combined immune therapy for the treatment of visceral leishmaniasis. PLoS Neglected Tropical Diseases 10, e0004415.CrossRefGoogle ScholarPubMed
Fernández, M. M., Malchiodi, E. L. and Algranati, I. D. (2011). Differential effects of paromomycin on ribosomes of Leishmania mexicana and mammalian cells. Antimicrobial Agents and Chemotherapy 55, 8693.CrossRefGoogle ScholarPubMed
Gannavaram, S., Dey, R., Avishek, K., Selvapandiyan, A., Salotra, P. and Nakhasi, H. L. (2015). Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis–discovery and implications. Control of Visceral Leishmaniasis by Immunotherapeutic and Prophylactic Strategies 5, 136.Google Scholar
Ghosh, M., Pal, C., Ray, M., Maitra, S., Mandal, L. and Bandyopadhyay, S. (2003). Dendritic cell-based immunotherapy combined with antimony-based chemotherapy cures established murine visceral leishmaniasis. The Journal of Immunology 170, 56255629.CrossRefGoogle ScholarPubMed
Guarga, J. L., Moreno, J., Lucientes, J., Gracia, M. J., Peribáñez, M. A. and Castillo, J. A. (2002). Evaluation of a specific immunochemotherapy for the treatment of canine visceral leishmaniasis. Veterinary Immunology and Immunopathology 88, 1320.CrossRefGoogle ScholarPubMed
Guedri, E., Zaatour, A., Alaya, B., Bettaieb, J., Gharbi, A., Boukthir, A., Chlif, S., Abdelhamid, K., El Ahmadi, Z. and Louzir, H. (2013). Topical paromomycin with or without gentamicin for cutaneous leishmaniasis. New England Journal of Medicine 368, 524532.Google Scholar
Gupta, G., Oghumu, S. and Satoskar, A. R. (2013). Mechanisms of immune evasion in leishmaniasis. Advances in Applied Microbiology 82, 155.CrossRefGoogle ScholarPubMed
Haldar, A. K., Sen, P. and Roy, S. (2011). Use of antimony in the treatment of leishmaniasis: current status and future directions. Molecular Biology International 2011, 124CrossRefGoogle ScholarPubMed
Hockertz, S., Franke, G., Paulini, I. and Lohmann-matthes, M.-L. (1991). Immunotherapy of murine visceral leishmaniasis with murine recombinant interferon-γ and MTP-PE encapsulated in liposomes. Journal of Interferon Research 11, 177185.CrossRefGoogle Scholar
Hoseini, M. H. M., Moradi, M., Alimohammadian, M. H., Shahgoli, V. K., Darabi, H. and Rostami, A. (2016). Immunotherapeutic effects of chitin in comparison with chitosan against Leishmania major infection. Parasitology International 65, 99104.CrossRefGoogle ScholarPubMed
Jain, K. and Jain, N. (2015). Vaccines for visceral leishmaniasis: a review. Journal of Immunological Methods 422, 112.CrossRefGoogle ScholarPubMed
Jamshidi, Sh., Avizeh, R., Mohebali, M. and Bokaie, S. (2011). Immunotherapy using autoclaved L. major antigens and M. vaccae with meglumine antimoniate, for the treatment of experimental canine visceral leishmaniasis. Iranian Journal of Parasitology 6, 2634.Google Scholar
Joshi, J. and Kaur, S. (2014). To investigate the therapeutic potential of immunochemotherapy with cisplatin+ 78 kDa+ MPL-A against Leishmania donovani in BALB/c mice. Parasite Immunology 36, 312.CrossRefGoogle ScholarPubMed
Joshi, J., Malla, N. and Kaur, S. (2014). A comparative evaluation of efficacy of chemotherapy, immunotherapy and immunochemotherapy in visceral leishmaniasis-an experimental study. Parasitology International 63, 612620.CrossRefGoogle ScholarPubMed
Katebi, A., Gholami, E., Taheri, T., Zahedifard, F., Habibzadeh, S., Taslimi, Y., Shokri, F., Papadopoulou, B., Kamhawi, S. and Valenzuela, J. (2015). Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model. Molecular Immunology 67, 501511.CrossRefGoogle Scholar
Keynan, Y., Larios, O. E., Wiseman, M. C., Plourde, M., Ouellette, M. and Rubinstein, E. (2008). Use of oral miltefosine for cutaneous leishmaniasis in Canadian soldiers returning from Afghanistan. Canadian Journal of Infectious Diseases and Medical Microbiology 19, 394396.CrossRefGoogle ScholarPubMed
Khalili, G., Dobakhti, F., Niknam, H. M., Khaze, V. and Partovi, F. (2011). Immunotherapy with Imiquimod increases the efficacy of Glucantime therapy of Leishmania major infection. Iranian Journal of Immunology 8, 45.Google ScholarPubMed
Li, J., Sutterwala, S. and Farrell, J. P. (1997). Successful therapy of chronic, nonhealing murine cutaneous leishmaniasis with sodium stibogluconate and gamma interferon depends on continued interleukin-12 production. Infection and Immunity 65, 32253230.Google ScholarPubMed
Machado-Pinto, J., Pinto, J., Da Costa, C. A., Genaro, O., Marques, M. J., Modabber, F. and Mayrink, W. (2002). Immunochemotherapy for cutaneous leishmaniasis: a controlled trial using killed Leishmania (Leishmania) amazonensis vaccine plus antimonial. International Journal of Dermatology 41, 7378.CrossRefGoogle ScholarPubMed
Mastroianni, A. (2004). Liposomal amphotericin B and rHuGM-CSF for treatment of visceral leishmaniasis in AIDS. Le infezioni in medicina: rivista periodica di eziologia, epidemiologia, diagnostica, clinica e terapia delle patologie infettive 12, 197204.Google Scholar
Mayrink, W., Botelho, A. C. D. C., Magalhães, P. A., Batista, S. M., Lima, A. D. O., Genaro, O., Costa, C. A. D., Melo, M. N. D., Michalick, M. S. M. and Williams, P. (2006). Immunotherapy, immunochemotherapy and chemotherapy for American cutaneous leishmaniasis treatment. Revista da Sociedade Brasileira de Medicina Tropical 39, 1421.CrossRefGoogle ScholarPubMed
Miret, J., Nascimento, E., Sampaio, W., França, J. C., Fujiwara, R. T., Vale, A., Dias, E. S., Vieira, E., da Costa, R. T. and Mayrink, W. (2008). Evaluation of an immunochemotherapeutic protocol constituted of N-methyl meglumine antimoniate (Glucantime®) and the recombinant Leish-110f®+ MPL-SE® vaccine to treat canine visceral leishmaniasis. Vaccine 26, 15851594.CrossRefGoogle Scholar
Mizbani, A., Taheri, T., Zahedifard, F., Taslimi, Y., Azizi, H., Azadmanesh, K., Papadopoulou, B. and Rafati, S. (2009). Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine 28, 5362.CrossRefGoogle ScholarPubMed
Mohapatra, S. (2014). Drug resistance in leishmaniasis: newer developments. Tropical Parasitology 4, 4.CrossRefGoogle ScholarPubMed
Monjour, L., Neogy, A. B., Vouldoukis, I., Silva, O. A., Boisnic, S., Brito, M. E. F., Lesot, A., Vignot, N., Martins, J. S. and Jardim, M. L. (1994). Exploitation of parasite derived antigen in therapeutic success of human cutaneous leishmaniasis in Brazil. Memórias do Instituto Oswaldo Cruz 89, 479483.CrossRefGoogle Scholar
Murray, H. W., Stern, J. J., Welte, K., Rubin, B. Y., Carriero, S. M. and Nathan, C. F. (1987). Experimental visceral leishmaniasis: production of interleukin 2 and interferon-gamma, tissue immune reaction, and response to treatment with interleukin 2 and interferon-gamma. Journal of Immunology 138, 22902297.Google ScholarPubMed
Murray, H. W., Berman, J. D. and Wright, S. D. (1988). Immunochemotherapy for intracellular Leishmania donovani infection: γ interferon plus pentavalent antimony. Journal of Infectious Diseases 157, 973978.CrossRefGoogle ScholarPubMed
Murray, H. W., Lu, C. M., Mauze, S., Freeman, S., Moreira, A. L., Kaplan, G. and Coffman, R. L. (2002). Interleukin-10 (IL-10) in experimental visceral leishmaniasis and IL-10 receptor blockade as immunotherapy. Infection and Immunity 70, 62846293.CrossRefGoogle ScholarPubMed
Murray, H. W., Lu, C. M., DeVecchio, J. L., Matsuhashi, M., Ma, X. and Heinzel, F. P. (2003). Determinants of response to interleukin-10 receptor blockade immunotherapy in experimental visceral leishmaniasis. Journal of Infectious Diseases 188, 458464.CrossRefGoogle ScholarPubMed
Nahrevanian, H., Jalalian, M., Farahmand, M., Assmar, M., Rastaghi, A. E. and Sayyah, M. (2012). Inhibition of murine systemic leishmaniasis by acetyl salicylic acid via nitric oxide immunomodulation. Iranian Journal of Parasitology 7, 21.Google ScholarPubMed
No, J. H. (2016). Visceral leishmaniasis: revisiting current treatments and approaches for future discoveries. Acta Tropica 155, 113123.CrossRefGoogle ScholarPubMed
Paila, Y. D., Saha, B. and Chattopadhyay, A. (2010). Amphotericin B inhibits entry of Leishmania donovani into primary macrophages. Biochemical and Biophysical Research Communications 399, 429433.CrossRefGoogle ScholarPubMed
Pereira, L. I., Dorta, M. L., Pereira, A. J. C., Bastos, R. P., Oliveira, M. A., Pinto, S. A., Galdino, H., Mayrink, W., Barcelos, W. and Toledo, V. P. (2009). Increase of NK cells and proinflammatory monocytes are associated with the clinical improvement of diffuse cutaneous leishmaniasis after immunochemotherapy with BCG/Leishmania antigens. The American Journal of Tropical Medicine and Hygiene 81, 378383.Google ScholarPubMed
Purkait, B., Kumar, A., Nandi, N., Sardar, A. H., Das, S., Kumar, S., Pandey, K., Ravidas, V., Kumar, M. and De, T. (2012). Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrobial Agents and Chemotherapy 56, 10311041.CrossRefGoogle ScholarPubMed
Raman, V. S., Bhatia, A., Picone, A., Whittle, J., Bailor, H. R., O'Donnell, J., Pattabhi, S., Guderian, J. A., Mohamath, R. and Duthie, M. S. (2010). Applying TLR synergy in immunotherapy: implications in cutaneous leishmaniasis. Journal of Immunology 185, 17011710.CrossRefGoogle ScholarPubMed
Reed, S. G., Barral-Netto, M. and Inverso, J. A. (1984). Treatment of experimental visceral leishmaniasis with lymphokine encapsulated in liposomes. Journal of Immunology 132, 31163119.Google Scholar
Ritter, U., Frischknecht, F. and van Zandbergen, G. (2009). Are neutrophils important host cells for Leishmania parasites? Trends in Parasitology 25, 505510.CrossRefGoogle ScholarPubMed
Sadick, M. D., Heinzel, F. P., Holaday, B. J., Pu, R. T., Dawkins, R. S. and Locksley, R. M. (1990). Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. The Journal of Experimental Medicine 171, 115127.CrossRefGoogle Scholar
Saljoughian, N., Taheri, T., Zahedifard, F., Taslimi, Y., Doustdari, F., Bolhassani, A., Doroud, D., Azizi, H., Heidari, K. and Vasei, M. (2013). Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis. PLoS Neglected Tropical Diseases 7, e2174.CrossRefGoogle ScholarPubMed
Santos, F. N., Borja-Cabrera, G. P., Miyashiro, L., Grechi, J., Reis, A. B., Moreira, M. A. B., Martins Filho, O. A., Luvizotto, M. C. R., Menz, I. and Pessôa, L. (2007). Immunotherapy against experimental canine visceral leishmaniasis with the saponin enriched-Leishmune® vaccine. Vaccine 25, 61766190.CrossRefGoogle Scholar
Santos, W. R., Aguiar, I. A., de Souza, E. P., de Lima, V. M., Palatnik, M. and Palatnik-de-Sousa, C. B. (2003). Immunotherapy against murine experimental visceral leishmaniasis with the FML-vaccine. Vaccine 21, 46684676.CrossRefGoogle ScholarPubMed
Savoia, D. (2015). Recent updates and perspectives on leishmaniasis. The Journal of Infection in Developing Countries 9, 588596.CrossRefGoogle ScholarPubMed
Schwarz, T., Remer, K. A., Nahrendorf, W., Masic, A., Siewe, L., Müller, W., Roers, A. and Moll, H. (2013). T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine. PLoS Pathogens 9, e1003476.CrossRefGoogle Scholar
Scott, P. and Novais, F. O. (2016). Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nature Reviews Immunology 16, 581592.CrossRefGoogle ScholarPubMed
Seifert, K., Juhls, C., Salguero, F. J. and Croft, S. L. (2015). Sequential chemoimmunotherapy of experimental visceral leishmaniasis using a single low dose of liposomal amphotericin B and a novel DNA vaccine candidate. Antimicrobial Agents and Chemotherapy 59, 58195823.CrossRefGoogle Scholar
Selvapandiyan, A., Debrabant, A., Duncan, R., Muller, J., Salotra, P., Sreenivas, G., Salisbury, J. L. and Nakhasi, H. L. (2004). Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in Leishmania. Journal of Biological Chemistry 279, 2570325710.CrossRefGoogle ScholarPubMed
Shahbazi, M., Zahedifard, F., Taheri, T., Taslimi, Y., Jamshidi, S., Shirian, S., Mahdavi, N., Hassankhani, M., Daneshbod, Y. and Zarkesh-Esfahani, S. H. (2015). Evaluation of live recombinant nonpathogenic Leishmania tarentolae expressing cysteine proteinase and A2 genes as a candidate vaccine against experimental canine visceral leishmaniasis. PloS ONE 10, e0132794.CrossRefGoogle ScholarPubMed
Shakya, N., Sane, S. A., Vishwakarma, P. and Gupta, S. (2012). Enhancement in therapeutic efficacy of miltefosine in combination with synthetic bacterial lipopeptide, Pam3Cys against experimental visceral leishmaniasis. Experimental Parasitology 131, 377382.CrossRefGoogle ScholarPubMed
Shalev, M., Rozenberg, H., Smolkin, B., Nasereddin, A., Kopelyanskiy, D., Belakhov, V., Schrepfer, T., Schacht, J., Jaffe, C. L. and Adir, N. (2015). Structural basis for selective targeting of leishmanial ribosomes: aminoglycoside derivatives as promising therapeutics. Nucleic Acids Research 43, 86018613.CrossRefGoogle ScholarPubMed
Singh, O. P., Singh, B., Chakravarty, J. and Sundar, S. (2016). Current challenges in treatment options for visceral leishmaniasis in India: a public health perspective. Infectious Diseases of Poverty 5, 1.CrossRefGoogle ScholarPubMed
Sundar, S. and Chakravarty, J. (2010). Liposomal amphotericin B and leishmaniasis: dose and response. Journal of Global Infectious Diseases 2, 159.CrossRefGoogle Scholar
Sundar, S. and Murray, H. W. (1995). Effect of treatment with interferon-γ alone in visceral leishmaniasis. Journal of Infectious Diseases 172, 16271629.CrossRefGoogle ScholarPubMed
Trigo, J., Abbehusen, M., Netto, E. M., Nakatani, M., Pedral-Sampaio, G., de Jesus, R. S., Goto, Y., Guderian, J., Howard, R. F. and Reed, S. G. (2010). Treatment of canine visceral leishmaniasis by the vaccine Leish-111f+ MPL-SE. Vaccine 28, 33333340.CrossRefGoogle ScholarPubMed
Vanloubbeeck, Y. F., Ramer, A. E., Jie, F. and Jones, D. E. (2004). CD4+ Th1 cells induced by dendritic cell-based immunotherapy in mice chronically infected with Leishmania amazonensis do not promote healing. Infection and Immunity 72, 44554463.CrossRefGoogle Scholar
Vincent, I. M., Weidt, S., Rivas, L., Burgess, K., Smith, T. K. and Ouellette, M. (2014). Untargeted metabolomic analysis of miltefosine action in Leishmania infantum reveals changes to the internal lipid metabolism. International Journal for Parasitology: Drugs and Drug Resistance 4, 2027.Google ScholarPubMed
Walker, P. S., Scharton-Kersten, T., Krieg, A. M., Love-Homan, L., Rowton, E. D., Udey, M. C. and Vogel, J. C. (1999). Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12-and IFN-γ-dependent mechanisms. Proceedings of the National Academy of Sciences 96, 69706975.CrossRefGoogle ScholarPubMed
WHO, e. s. o. (2016). Scholar
Zahedifard, F., Gholami, E., Taheri, T., Taslimi, Y., Doustdari, F., Seyed, N., Torkashvand, F., Meneses, C., Papadopoulou, B. and Kamhawi, S. (2014). Enhanced protective efficacy of nonpathogenic recombinant Leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS Neglected Tropical Diseases 8, e2751.CrossRefGoogle ScholarPubMed
Zubairi, S., Sanos, S. L., Hill, S. and Kaye, P. M. (2004). Immunotherapy with OX40L-Fc or anti-CTLA-4 enhances local tissue responses and killing of Leishmania donovani. European Journal of Immunology 34, 14331440.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 171
Total number of PDF views: 492 *
View data table for this chart

* Views captured on Cambridge Core between 15th December 2016 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Leishmaniasis and various immunotherapeutic approaches
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Leishmaniasis and various immunotherapeutic approaches
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Leishmaniasis and various immunotherapeutic approaches
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *