Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-q7jt5 Total loading time: 0.432 Render date: 2021-02-25T08:54:52.389Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Characterization of the novel Trypanosoma brucei inosine 5′-monophosphate dehydrogenase

Published online by Cambridge University Press:  01 February 2013

TOMOAKI BESSHO
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
SHOKO MORII
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
TOSHIHIDE KUSUMOTO
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
TAKAHIRO SHINOHARA
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
MASANORI NODA
Affiliation:
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
SUSUMU UCHIYAMA
Affiliation:
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
SATOSHI SHUTO
Affiliation:
Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo 060-0812, Japan
SHIGENORI NISHIMURA
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
APPOLINAIRE DJIKENG
Affiliation:
Biosciences eastern and central Africa (BecA) Hub at the International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya The J Craig Venter Institute (JCVI), Rockville, MD 20876, USA
MICHAEL DUSZENKO
Affiliation:
Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, 72076 Tübingen, Germany
SAMUEL K. MARTIN
Affiliation:
Retired from United States Army Medical Research Unit-Kenya, Unit 64109, APO AE 09831-64109
TAKASHI INUI
Affiliation:
Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
KILUNGA B. KUBATA
Affiliation:
AU/NEPAD Agency Regional Office for Eastern and Central Africa, P.O. BOX 13601-00800, Nairobi, Kenya

Summary

There is an alarming rate of human African trypanosomiasis recrudescence in many parts of sub-Saharan Africa. Yet, the disease has no successful chemotherapy. Trypanosoma lacks the enzymatic machinery for the de novo synthesis of purine nucleotides, and is critically dependent on salvage mechanisms. Inosine 5′-monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide metabolism. Here, we characterize recombinant Trypanosoma brucei IMPDH (TbIMPDH) to investigate the enzymatic differences between TbIMPDH and host IMPDH. Size-exclusion chromatography and analytical ultracentrifugation sedimentation velocity experiments reveal that TbIMPDH forms a heptamer, different from type 1 and 2 mammalian tetrameric IMPDHs. Kinetic analysis reveals calculated Km values of 30 and 1300 μm for IMP and NAD, respectively. The obtained Km value of TbIMPDH for NAD is approximately 20–200-fold higher than that of mammalian enzymes and indicative of a different NAD binding mode between trypanosomal and mammalian IMPDHs. Inhibition studies show Ki values of 3·2 μm, 21 nM and 3·3 nM for ribavirin 5′-monophosphate, mycophenolic acid and mizoribine 5′-monophosphate, respectively. Our results show that TbIMPDH is different from its mammalian counterpart and thus may be a good target for further studies on anti-trypanosomal drugs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below.

References

World Health Organization (2007). African trypanosomiasis (sleeping sickness), Fact sheet No. 259. WHO, Geneva, Switzerland.Google Scholar
Barrett, M. P., Boykin, D. W., Brun, R. and Tidwell, R. R. (2007). Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. British Journal of Pharmacology 152, 11551171. doi: 10.1038/sj.bjp.0707354.CrossRefGoogle ScholarPubMed
Bilengue, C. M., Meso, V. K., Louis, F. J. and Lucas, P. (2001). Human African trypanosomiasis in the urban milieu: the example of Kinshasa, Democratic Republic of the Congo, in 1998 and 1999. Médecine tropicale: revue du Corps de santé colonial 61, 445448.Google ScholarPubMed
Burri, C. and Brun, R. (2003). Eflornithine for the treatment of human African trypanosomiasis. Parasitology Research 90 (Suppl. 1), S49S52. doi: 10.1007/s00436-002-0766-5.Google ScholarPubMed
Colby, T. D., Vanderveen, K., Strickler, M. D., Markham, G. D. and Goldstein, B. M. (1999). Crystal structure of human type II inosine monophosphate dehydrogenase: implications for ligand binding and drug design. Proceedings of the National Academy of Sciences USA 96, 35313536. doi: 10.1073/pnas.96.7.3531.CrossRefGoogle ScholarPubMed
Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R. and Cameron, C. E. (2000). The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nature Medicine 6, 13751379. doi: 10.1038/82191.CrossRefGoogle ScholarPubMed
Digits, J. A. and Hedstrom, L. (1999 a). Kinetic mechanism of Tritrichomonas foetus inosine 5′-monophosphate dehydrogenase. Biochemistry 38, 22952306. doi: 10.1021/bi982305k.CrossRefGoogle ScholarPubMed
Digits, J. A. and Hedstrom, L. (1999 b). Species-specific inhibition of inosine 5′-monophosphate dehydrogenase by mycophenolic acid. Biochemistry 38, 1538815397. doi: 10.1021/bi991558q.CrossRefGoogle ScholarPubMed
Dobie, F., Berg, A., Boitz, J. M. and Jardim, A. (2007). Kinetic characterization of inosine monophosphate dehydrogenase of Leishmania donovani. Molecular and Biochemical Parasitology 152, 1121. doi: 10.1016/j.molbiopara.2006.11.007.CrossRefGoogle ScholarPubMed
Doua, F. and Yapo, F. B. (1993). Human trypanosomiasis in the Ivory Coast: therapy and problems. Acta Tropica 54, 163168. doi: 10.1016/0001-706X(93)90090-X.CrossRefGoogle ScholarPubMed
Gan, L., Petsko, G. A. and Hedstrom, L. (2002). Crystal structure of a ternary complex of Tritrichomonas foetus inosine 5′-monophosphate dehydrogenase: NAD+ orients the active site loop for catalysis. Biochemistry 41, 1330913317. doi: 10.1021/bi0203785.CrossRefGoogle ScholarPubMed
Gan, L., Seyedsayamdost, M. R., Shuto, S., Matsuda, A., Petsko, G. A. and Hedstrom, L. (2003). The immunosuppressive agent mizoribine monophosphate forms a transition state analogue complex with inosine monophosphate dehydrogenase. Biochemistry 42, 857863. doi: 10.1021/bi0271401.CrossRefGoogle ScholarPubMed
Gensburger, O., Picard, N. and Marquet, P. (2009). Effect of mycophenolate acyl-glucuronide on human recombinant type 2 inosine monophosphate dehydrogenase. Clinical Chemistry 55, 986993. doi: 10.1373/clinchem.2008.113936.CrossRefGoogle ScholarPubMed
Gutteridge, W. E. (1985). Existing chemotherapy and its limitations. British Medical Bulletin 41, 162168.CrossRefGoogle ScholarPubMed
Hager, P. W., Collart, F. R., Huberman, E. and Mitchell, B. S. (1995). Recombinant human inosine monophosphate dehydrogenase type I and type II proteins. Purification and characterization of inhibitor binding. Biochemical Pharmacology 49, 13231329. doi: 0006-2952(95)00026-V [pii].CrossRefGoogle ScholarPubMed
Hong, Z. and Cameron, C. E. (2002). Pleiotropic mechanisms of ribavirin antiviral activities. Progress in Drug Research 59, 4169.CrossRefGoogle ScholarPubMed
Iten, M., Mett, H., Evans, A., Enyaru, J. C., Brun, R. and Kaminsky, R. (1997). Alterations in ornithine decarboxylase characteristics account for tolerance of Trypanosoma brucei rhodesiense to D,L-alpha-difluoromethylornithine. Antimicrobial Agents and Chemotherapy 41(9), 19221925.Google ScholarPubMed
Jayaram, H. N., Dion, R. L., Glazer, R. I., Johns, D. G., Robins, R. K., Srivastava, P. C. and Cooney, D. A. (1982). Initial studies on the mechanism of action of a new oncolytic thiazole nucleoside, 2-beta-D-ribofuranosylthiazole-4-carboxamide (NSC 286193). Biochemical Pharmacology 31, 23712380. doi: 10.1016/0006-2952(82)90532-9.CrossRefGoogle Scholar
Kerr, K. M. and Hedstrom, L. (1997). The roles of conserved carboxylate residues in IMP dehydrogenase and identification of a transition state analog. Biochemistry 36, 1336513373. doi: 10.1021/bi9714161.CrossRefGoogle ScholarPubMed
Kharbanda, S. M., Sherman, M. L. and Kufe, D. W. (1990). Effects of tiazofurin on guanine nucleotide binding regulatory proteins in HL-60 cells. Blood 75, 583588.Google ScholarPubMed
Kirubakaran, S., Gorla, S. K., Sharling, L., Zhang, M., Liu, X., Ray, S. S., Macpherson, I. S., Striepen, B., Hedstrom, L. and Cuny, G. D. (2012). Structure-activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH. Bioorganic and Medicinal Chemistry Letters 22, 19851988. doi: 10.1016/j.bmcl.2012.01.029.CrossRefGoogle ScholarPubMed
Kubata, B. K., Martin, S. K. and Milhous, W. K. (2008). Artemisinins in the clinical and veterinary management of kinetoplastid infections. In International Patent (ed. Organization, T. W. I. P.).Google Scholar
Kubata, B. K., Nagamune, K., Murakami, N., Merkel, P., Kabututu, Z., Martin, S. K., Kalulu, T. M., Huq, M., Yoshida, M., Ohnishi-Kameyama, M., Kinoshita, T., Duszenko, M. and Urade, Y. (2005). Kola acuminata proanthocyanidins: a class of anti-trypanosomal compounds effective against Trypanosoma brucei. International Journal for Parasitology 35, 91103. doi: 10.1016/j.ijpara.2004.10.019.CrossRefGoogle ScholarPubMed
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.CrossRefGoogle ScholarPubMed
Maag, D., Castro, C., Hong, Z. and Cameron, C. E. (2001). Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin. Journal of Biological Chemistry 276, 4609446098. doi: 10.1074/jbc.C100349200.CrossRefGoogle ScholarPubMed
Mandanas, R. A., Leibowitz, D. S., Gharehbaghi, K., Tauchi, T., Burgess, G. S., Miyazawa, K., Jayaram, H. N. and Boswell, H. S. (1993). Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells. Blood 82, 18381847.Google ScholarPubMed
Manzoli, L., Billi, A. M., Gilmour, R. S., Martelli, A. M., Matteucci, A., Rubbini, S., Weber, G. and Cocco, L. (1995). Phosphoinositide signaling in nuclei of Friend cells: tiazofurin down-regulates phospholipase C beta 1. Cancer Research 55, 29782980.Google ScholarPubMed
Markham, G. D., Bock, C. L. and Schalk-Hihi, C. (1999). Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase. Biochemistry 38, 44334440. doi: 10.1021/bi9829579.CrossRefGoogle ScholarPubMed
Michels, P. A., Bringaud, F., Herman, M. and Hannaert, V. (2006). Metabolic functions of glycosomes in trypanosomatids. Biochimica Biophysica Acta 1763, 14631477. doi: 10.1016/j.bbamcr.2006.08.019.CrossRefGoogle ScholarPubMed
Mortimer, S. E. and Hedstrom, L. (2005). Autosomal dominant retinitis pigmentosa mutations in inosine 5′-monophosphate dehydrogenase type I disrupt nucleic acid binding. Biochemical Journal 390, 4147. doi: 10.1042/BJ20042051.CrossRefGoogle ScholarPubMed
Nishio, M., Kamiya, Y., Mizushima, T., Wakatsuki, S., Sasakawa, H., Yamamoto, K., Uchiyama, S., Noda, M., McKay, A. R., Fukui, K., Hauri, H. P. and Kato, K. (2010). Structural basis for the cooperative interplay between the two causative gene products of combined factor V and factor VIII deficiency. Proceedings of the National Academy of Sciences, USA 107, 40344039.CrossRefGoogle ScholarPubMed
Oda, M., Uchiyama, S., Noda, M., Nishi, Y., Koga, M., Mayanagi, K., Robinson, C. V., Fukui, K., Kobayashi, Y., Morikawa, K. and Azuma, T. (2009). Effects of antibody affinity and antigen valence on molecular forms of immune complexes. Molecular Immunology 47, 357364.CrossRefGoogle ScholarPubMed
Parandoosh, Z., Robins, R. K., Belei, M. and Rubalcava, B. (1989). Tiazofurin and selenazofurin induce depression of cGMP and phosphatidylinositol pathway in L1210 leukemia cells. Biochemical and Biophysical Research Communications 164, 869874. doi: 10.1016/0006-291X(89)91539-8.CrossRefGoogle ScholarPubMed
Parandoosh, Z., Rubalcava, B., Matsumoto, S. S., Jolley, W. B. and Robins, R. K. (1990). Changes in diacylglycerol and cyclic GMP during the differentiation of human myeloid leukemia K562 cells. Life Sciences 46, 315320.CrossRefGoogle ScholarPubMed
Patterson, J. L. and Fernandez-Larsson, R. (1990). Molecular mechanisms of action of ribavirin. Reviews of Infectious Diseases 12, 11391146.CrossRefGoogle ScholarPubMed
Pepin, J. and Milord, F. (1994). The treatment of human African trypanosomiasis. Advances in Parasitology 33, 147.CrossRefGoogle ScholarPubMed
Poynard, T., Marcellin, P., Lee, S. S., Niederau, C., Minuk, G. S., Ideo, G., Bain, V., Heathcote, J., Zeuzem, S., Trepo, C. and Albrecht, J. (1998). Randomised trial of interferon alpha2b plus ribavirin for 48 weeks or for 24 weeks versus interferon alpha2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. International Hepatitis Interventional Therapy Group (IHIT). Lancet 352, 14261432. doi:10.1016/S0140-6736(98)07124-4.CrossRefGoogle Scholar
Ross, C. A. and Sutherland, D. V. (1997). Drug resistance in trypanosomatids. In Trypanosomiasis and Leishmaniasis: Biology and Control (ed. Hide, G., Mottram, J. C., Coombs, G. H. and Holmes, P. H.), pp. 259269. CAB International, Wallingford, UK.Google Scholar
Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophysical Journal 78, 16061619.CrossRefGoogle ScholarPubMed
Shuto, S., Haramuishi, K., Fukuoka, M. and Matsuda, A. (2000). Synthesis of sugar-modified analogs of bredinin (mizoribine), a clinically useful immunosuppressant, by a novel photochemical imidazole ring-cleavage reaction as the key step 1. Journal of the Chemical Society, Perkin Transactions 1 21, 36033609.CrossRefGoogle Scholar
Smith, D. H., Pepin, J. and Stich, A. H. (1998). Human African trypanosomiasis: an emerging public health crisis. British Medical Bulletin 54(2), 341355.CrossRefGoogle Scholar
Szekeres, T., Fritzer, M., Pillwein, K., Felzmann, T. and Chiba, P. (1992). Cell cycle dependent regulation of IMP dehydrogenase activity and effect of tiazofurin. Life Sciences 51, 13091315.CrossRefGoogle ScholarPubMed
Umejiego, N. N., Li, C., Riera, T., Hedstrom, L. and Striepen, B. (2004). Cryptosporidium parvum IMP dehydrogenase: identification of functional, structural, and dynamic properties that can be exploited for drug design. Journal of Biological Chemistry 279, 4032040327.CrossRefGoogle ScholarPubMed
Verham, R., Meek, T. D., Hedstrom, L. and Wang, C. C. (1987). Purification, characterization, and kinetic analysis of inosine 5′-monophosphate dehydrogenase of Tritrichomonas foetus. Molecular and Biochemical Parasitology 24, 112. doi:10.1016/0166-6851(87)90110-1.CrossRefGoogle ScholarPubMed
Vertommen, D., Van Roy, J., Szikora, J. P., Rider, M. H., Michels, P. A. and Opperdoes, F. R. (2008). Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei. Molecular and Biochemical Parasitology 158, 189201. doi:S0166–6851(07)00344-1 [pii] 10.1016/j.molbiopara.2007.12.008.CrossRefGoogle ScholarPubMed
Wang, W. and Hedstrom, L. (1997). Kinetic mechanism of human inosine 5′-monophosphate dehydrogenase type II: random addition of substrates and ordered release of products. Biochemistry 36, 84798483. doi:10.1021/bi970226n.CrossRefGoogle Scholar
Weber, G., Prajda, N., Abonyi, M., Look, K. Y. and Tricot, G. (1996). Tiazofurin: molecular and clinical action. Anticancer Research 16, 33133322.Google ScholarPubMed
Welburn, S. C. and Odiit, M. (2002). Recent developments in human African trypanosomiasis. Current Opinion in Infectious Diseases 15, 477484.CrossRefGoogle ScholarPubMed
Wilson, K., Berens, R. L., Sifri, C. D. and Ullman, B. (1994). Amplification of the inosinate dehydrogenase gene in Trypanosoma brucei gambiense due to an increase in chromosome copy number. Journal of Biological Chemistry 269, 2897928987.Google Scholar
Witkowski, J. T., Robins, R. K., Sidwell, R. W. and Simon, L. N. (1972). Design, synthesis, and broad spectrum antiviral activity of 1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. Journal of Medicinal Chemistry 15, 11501154.CrossRefGoogle Scholar
Wu, J. C. (1994). Perspectives in drug discovery and design. In Mycophenolate mofetil: Molecular Mechanisms of Action, Vol. 2. pp. 185204. Leiden, the Netherlands.Google Scholar
Zhang, R., Evans, G., Rotella, F. J., Westbrook, E. M., Beno, D., Huberman, E., Joachimiak, A. and Collart, F. R. (1999). Characteristics and crystal structure of bacterial inosine-5′-monophosphate dehydrogenase. Biochemistry 38, 46914700. doi:10.1021/bi982858v.CrossRefGoogle ScholarPubMed

Bessho Supplementary Material

Appendix

File 252 KB

Bessho Supplementary Material

Appendix

File 252 KB

Bessho Supplementary Material

Appendix

File 74 KB

Bessho Supplementary Material

Appendix

File 74 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 36
Total number of PDF views: 114 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterization of the novel Trypanosoma brucei inosine 5′-monophosphate dehydrogenase
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Characterization of the novel Trypanosoma brucei inosine 5′-monophosphate dehydrogenase
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Characterization of the novel Trypanosoma brucei inosine 5′-monophosphate dehydrogenase
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *