Skip to main content Accessibility help
×
Home

Molecular characterization and diagnostic potential of serine proteinase inhibitors from Taenia solium

  • Guangxue Liu (a1), Panhong Liang (a1), Li Mao (a1) (a2), Shaohua Zhang (a1), Lijie Wang (a1), Yadong Zheng (a1) (a3), Aijiang Guo (a1), Junling Hou (a1) and Xuenong Luo (a1) (a3)...

Abstract

Serine protease inhibitors (serpins) play essential physiological roles in a wide range of biological processes. Serpins are researched limited in Taenia solium, although some are considered to participate in host immune responses. Tsserpins were identified as typical serpins due to the primary structure of characteristic features: the serpin motif, serpin signature and reaction centre loop (RCL). RCLs of four serpin genes (TsB6, Ts4848, Ts12383 and Ts570) contained the conserved sequences of inhibitory serpins, which may involve in immune regulation. TsEP45 differed greatly from the patterns of representative serpins, suggesting that TsEP45 may be non-inhibitory. The bioinformatic analyses were supposed that Tsserpins might be a potential antigen for diagnosis. The five recombinant Tsserpin proteins were expressed and identified reacting with Cysticercus cellulosae-positive serum samples. The indirect enzyme-linked immunosorbent assay (iELISAs) based on Tsserpins were developed and validated, one of the five Tsserpins, TsEP45, showed excellent diagnostic results with 93·33% sensitivity and 94·12% specificity, respectively. This performance was in perfect accordance with the results of the bioinformatic analysis. This study provided a comprehensive demonstration of sequences and structural-based analysis of Tsserpins. The iELISAs based on five Tsserpins were developed and compared. TsEP45 was the potential species-specific antigen for developing iELISA to detect porcine cysticercosis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Molecular characterization and diagnostic potential of serine proteinase inhibitors from Taenia solium
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Molecular characterization and diagnostic potential of serine proteinase inhibitors from Taenia solium
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Molecular characterization and diagnostic potential of serine proteinase inhibitors from Taenia solium
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Xuenong Luo, E-mail: luoxuenong@caas.cn

References

Hide All
Blanton, RE, Licate, LS and Aman, RA (1994) Characterization of a native and recombinant Schistosoma haematobium serine protease inhibitor gene product. Molecular & Biochemical Parasitology 63, 111.
Chopin, V, Matias, I, Stefano, GB and Salzet, M (1988) Amino acid sequence determination and biological activity of therin, a naturally occurring specific trypsin inhibitor from the leech Theromyzon tessulatum . European Journal of Biochemistry 254, 565570.
Congote, LF (2007) Serpin A1 and CD91 as host instruments against HIV-1 infection: are extracellular antiviral peptides acting as intracellular messengers? Virus Research 125, 119134.
Debrock, S and Declerck, PJ (1997) Neutralization of plasminogen activator inhibitor-1 inhibitory properties: identification of two different mechanisms. Biochimica et Biophysica Acta 1337, 257266.
Fleury, A, Carrillo-Mezo, R, Flisser, A, Sciutto, E and Corona, T (2011) Subarachnoid basal neurocysticercosis: a focus on the most severe form of the disease. Expert Review of Anti-Infective Therapy 9, 123133.
Gettins, PG (2002) Serpin structure, mechanism, and function. Chemical Reviews 12, 47514804.
Greiner, M, Pfeiffer, D and Smith, RD (2000) Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive Veterinary Medicine 45, 2341.
Han, J, Zhang, H, Min, G, Kemler, D and Hashimoto, C (2000) A novel Drosophila serpin that inhibits serine proteases. FEBS Letters 468, 194198.
Hanley, JA, McNeil, BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 2936.
He, JJ, Ma, J, Song, HQ, Zhou, DH, Wang, JL, Huang, SY and Zhu, XQ (2016) Transcriptomic analysis of global changes in cytokine expression in mouse spleens following acute Toxoplasma gondii infection. Parasitology Research 115, 703712.
Huntington, JA (2006) Shape-shifting serpins – advantages of a mobile mechanism. Trends in Biochemical Sciences 31, 427435.
Irving, JA, Pike, RN, Lesk, AM and Whisstock, JC (2000) Phylogeny of the serpin superfamily implications of patterns of amino acid conservation for structure and function. Genome Research 10, 18451864.
Jaeschke, R, Guyatt, GH and Sackett, DL (1994) Users’ guides to the medical literature: III. How to use an article about a diagnostic test B. What Are the results and will they help Me in caring for My patients? JAMA 271, 703707.
Mak, P, Enghild, JJ and Dubin, A (1996) Hamster antithrombin III: purification, characterization and acute phase response. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 115, 135141.
McCarthy, BJ and Worrall, DM (1997) Analysis of serpin inhibitory function by mutagenesis of ovalbumin and generation of chimeric ovalbumin/PAI-2 fusion proteins. Journal of Molecular Biology 267, 561569.
Merckelbach, A and Ruppel, A (2007) Biochemical properties of an intracellular serpin from echinococcus multilocularis. Molecular & Biochemical Parasitology 156, 8488.
Molehin, AJ, Gobert, GN and McManus, DP (2012) Serine protease inhibitors of parasitic helminths. Parasitology 139, 681695.
Molehin, AJ, Gobert, GN, Driguez, P and McManus, DP (2014) Functional characterization of SjB10, an intracellular serpin from schistosoma japonicum. Parasitology 141, 17461760.
Na, BK, Kim, SH, Lee, EG, Kim, TS, Bae, YA, Kang, I, Yu, JR, Sohn, WM, Cho, SY and Kong, Y (2006) Critical roles for excretory-secretory cystetine proteases during tissue invasion of Paragonimus westermani newly excysted metacercariae. Cellular Microbiology 8, 10341046.
O'Donnell, RA and Blackman, MJ (2005) The role of malaria merozoite proteases in red blood cell invasion. Current Opinion in Microbiology 8, 422427.
Potempa, J, Korzus, E and Travis, J (1994) The serpin superfamily of proteinase inhibitors: structure, function and regulation. Journal of Biological Chemistry 269(23), 1595715960.
Rawlings, ND, Waller, M, Barrett, AJ and Bateman, A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research 42, D503D509.
Riewald, M and Schleef, RR (1996) Human cytoplasmic antiproteinase neutralizes rapidly and efficiently chymotrypsin and trypsin-like proteases utilizing distinct reactive site residues. Journal of Biological Chemistry 271, 1452614532.
Ritchie, H and Booth, NA (1998) Secretion of plasminogen activator inhibitor 2 by human peripheral blood monocytes occurs via an endoplasmic reticulum-Golgi-independent pathway. Experimental Cell Research 242, 239250.
Roberts, RM, Mathialagan, N, Duffy, JY and Smith, GW (1995) Regulation and regulatory role of proteinase inhibitors. Critical Reviews in Eukaryotic Gene Expression 5, 385436.
Silverman, GA, Bird, PI, Carrell, RW, Church, FC, Coughlin, PB, Gettins, PG, Irving, JA, Lomas, DA, Luke, CJ, Moyer, RW, Pemberton, PA, Remold-O'Donnell, E, Salvesen, GS, Travis, J and Whisstock, JC (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. Journal of Biological Chemistry 276, 3329333296.
Sugino, M, Imamura, S, Mulenga, A, Nakajima, M, Tsuda, A, Ohashi, K and Onuma, M (2003) Serine proteinase inhibitor (serpin) from ixodid tick Haemaphysalis longicornis; cloning and preliminary assessment of its suitability as a candidate for a tick vaccine. Vaccine 21, 28442851.
Tanigawa, C, Fujii, Y, Miura, M, Nzou, SM, Mwangi, AW, Nagi, S, Hamano, S, Njenga, SM, Mbanefo, EC, Hirayama, K, Mwau, M and Kaneko, S (2015) Species-Specific serological detection for schistosomiasis by serine protease inhibitor (SERPIN) in multiplex assay. PLoS Neglected Tropical Diseases 9, e0004021.
Thorgersen, EB, Ghebremariam, YT, Thurman, JM, Fung, M, Nielsen, EW, Holers, VM, Kotwal, GJ and Mollnes, TE (2007) Candidate inhibitors of porcine complement. Molecular Immunology 44, 18271834.
Tsai, IJ, Zarowiecki, M, Holroyd, N, Garciarrubio, A, Sanchez-Flores, A, Brooks, KL, Tracey, A, Bobes, RJ, Fragoso, G, Sciutto, E, Aslett, M, Beasley, H, Bennett, HM, Cai, J, Camicia, F, Clark, R, Cucher, M, De Silva, N, Day, TA, Deplazes, P, Estrada, K, Fernández, C, Holland, PW, Hou, J, Hu, S, Huckvale, T, Hung, SS, Kamenetzky, L, Keane, JA, Kiss, F, Koziol, U, Lambert, O, Liu, K, Luo, X, Luo, Y, Macchiaroli, N, Nichol, S, Paps, J, Parkinson, J, Pouchkina-Stantcheva, N, Riddiford, N, Rosenzvit, M, Salinas, G, Wasmuth, JD, Zamanian, M, Zheng, Y; Cai, X, Soberón, X, Olson, PD, Laclette, JP, Brehm, K and Berriman, M (2013) The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496, 5763.
Valadi, H, Ekström, K, Bossios, A, Sjöstrand, M, Lee, JJ and Lötvall, JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology 9, 654659.
Yi, D, Xu, L, Yan, R and Li, X (2010) Haemonchus contortus: cloning and characterization of serpin. Experimental Parasitology 125, 363370.

Keywords

Type Description Title
WORD
Supplementary materials

Liu et al supplementary material
Tables 1S-4S and Figures 1S-3S

 Word (1.0 MB)
1.0 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed