Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T14:20:21.679Z Has data issue: false hasContentIssue false

A Review of Evolutionary Trends in Carbonate Hardground Communities

Published online by Cambridge University Press:  26 July 2017

Mark A. Wilson
Affiliation:
Department of Geology, The College of Wooster, Wooster, Ohio 44691
Timothy J. Palmer
Affiliation:
Institute of Earth Studies, University College of Wales, Dyfed SY23 2DB United Kingdom
Get access

Extract

Ancient and modern marine carbonate hardgrounds offer unusual opportunities to study the evolution of communities from the Early Cambrian into the Holocene. Throughout this time the general physical conditions of a hardground community have been similar. The substrate is hard so sessile organisms must either attach to its surface, nestle in cavities, or bore into it for occupation. These organisms are thus preserved in situ. Since space is often the limiting physical resource, organisms must have ways of obtaining and defending it, and these competitive hierarchies are often preserved in the spatial relationships of the species. Scouring and/or burial in sediment usually marks the end of the brief habitation.

Type
Research Article
Copyright
Copyright © 1990 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baluk, W., and Radwanski, A. 1977. Organic communities and facies development of the Korytnica Basin (Middle Miocene; Holy Cross Mountains, central Poland). Acta Geologica Polonica, 27:85123.Google Scholar
Bell, B.M. 1975. Ontogeny and systematics of Timeischytes casteri n. sp.: an enigmatic Devonian edrioasteroid. Bulletins of American Paleontology, 67:3356.Google Scholar
Boardman, R. S. 1984. Origin of the post-Triassic Stenolaemata (Bryozoa): A taxonomic oversight. Journal of Paleontology, 58:1939.Google Scholar
Bodenbender, B. E., Wilson, M. A., and Palmer, T. J. 1989. Paleoecology of Sphenothallus on an Upper Ordovician hardground. Lethaia, 22 (In Press).CrossRefGoogle Scholar
Brett, C. E., and Brookfield, M. E. 1984. Morphology, faunas and genesis of Ordovician hardgrounds from southern Ontario, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 46:233290.CrossRefGoogle Scholar
Brett, C. E., and Liddell, W. D. 1978. Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology, 4:329348.CrossRefGoogle Scholar
Brett, C. E., Liddell, W. D., and Derstler, K. L. 1983. Late Cambrian hard substrate communities from Montana/Wyoming: the oldest known hardground encrusters. Lethaia, 16:281289.CrossRefGoogle Scholar
Bromley, R. G., and D'AlessandRo, A. 1984. The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Rivista Italiana Paleontologia e Stratigrafia, 90:227296.Google Scholar
Byers, C.W., and Statsko, L.E. 1978. Trace fossils and sedimentological interpretation McGregor Member of Platteville Formation (Ordovician) of Wisconsin. Journal of Sedimentary Petrology, 48:13031310.Google Scholar
Carter, J.G. 1978. Ecology and evolution of the Gastrochaenacea (Mollusca, Bivalvia) with notes on the evolution of the endolithic habitat. Peabody Museum of Natural History, Yale University Bulletin, v. 41, 92 p.Google Scholar
Cherns, L. 1983. The Hemse-Eke boundary. Facies relationships in the Ludlow Series of Gotland, Sweden. Sveriges Geologiska Undersökning, Serie C NR 800:145.Google Scholar
Coates, A. G., and Jackson, J. B. C. 1985. Morphological themes in the evolution of clonal and aclonal marine invertebrates, p. 67106. In Jackson, J. B. C., Buss, L. W., and Cook, R. E. (eds.), Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven.Google Scholar
Dawson, W.C., and Carozzi, A.V. 1983. Hardground petrography and carbonate microfacies: Paola Limestone (Upper Pennsylvanian), southeastern Kansas. American Association of Petroleum Geologists Bulletin, Abstracts, 67:447448.Google Scholar
Franzen, C. 1977. Crinoid holdfasts from the Silurian of Gotland. Lethaia, 10:219234.CrossRefGoogle Scholar
Fürsich, F.T. 1971. Hartgründe und Kondensation im Dogger von Calvados. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 138:313342.Google Scholar
Fürsich, F.T. 1975. Trace fossils as environmental indicators in the Corallian of England and Normandy. Lethaia, 8:151172.CrossRefGoogle Scholar
Fürsich, F.T. 1978. Variability of Jurassic hardground faunas: pitfalls in studies of community evolution. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 157:5256.Google Scholar
Fürsich, F.T. 1979. Genesis, environments, and ecology of Jurassic hard-grounds. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 158:163.Google Scholar
Fürsich, F.T., and Palmer, T. J. 1975. Open crustacean burrows associated with hardgrounds in the Jurassic of the Cotswolds, England. Proceedings of the Geological Association, 86:171181.CrossRefGoogle Scholar
Garrison, R.E., Kennedy, W.J., and Palmer, T.J. 1987. Early lithification and hardgrounds in Upper Albian and Cenomanian calcarenites, southwest England. Cretaceous Research, 8:103140.CrossRefGoogle Scholar
Ginsburg, R. N., and Schroeder, J.H. 1973. Growth and submarine fossilization of algal cup reefs, Bermuda. Sedimentology, 20:575614.CrossRefGoogle Scholar
Goldring, R., and Kazmierczak, J. 1974. Ecological succession in intraformational hardground formation. Palaeontology, 17:949962.Google Scholar
Gruszczynski, M. 1979. Ecological succession in Upper Jurassic hardgrounds from central Poland. Acta Palaeontologica Polonica, 24:429450.Google Scholar
Gruszczynski, M. 1986. Hardgrounds and ecological succession in the light of early diagenesis (Jurassic, Holy Cross Mts., Poland). Acta Palaeontologica Polonica, 31:163212.Google Scholar
Hagdorn, H., and Simon, T. 1983. Ein Hartgrund im unteren Muschelkalk von Göttingen. Der Aufschluss, 34:255263.Google Scholar
Hallam, A. 1969. A pyritised limestone hardground in the Lower Jurassic of Dorset(England). Sedimentology,12:231240.CrossRefGoogle Scholar
Halleck, M. S. 1973. Crinoids, hardgrounds, and community succession: The Silurian Laurel-Waldron contact in southern Indiana. Lethaia, 6:239252.CrossRefGoogle Scholar
Hecker, R.F. 1935. Phenomena of overgrowth and attachment in Upper Devonian fauna and flora of main Devonian field. Trudy Paleozoology Institute Akademie Nauk SSSR, 4:159280.Google Scholar
Hecker, R.F. 1960. Fossil facies of smooth rocky sea-floor. Trudy Geology Institute Akademie Nauk Estonia SSR, 5:199227.Google Scholar
Jackson, J. B. C. 1977. Competition on marine hard substrata: The adaptive significance of solitary and colonial strategies. American Naturalist, 111:743767.CrossRefGoogle Scholar
Jackson, J. B. C., and Winston, J.E. 1982. Ecology of cryptic reef coral communities. I. Distribution and abundance of major groups of encrusting organisms. Journal of Experimental Marine Biology and Ecology, 57:135147.CrossRefGoogle Scholar
James, N.P., Kobluk, D.R., and Pemberton, S.G. 1977. The oldest macroborers: Lower Cambrian of Labrador. Science, 197:980983.CrossRefGoogle ScholarPubMed
Johnson, M.E. 1988. Why are ancient rocky shores so uncommon? Journal of Geology, 96:469480.CrossRefGoogle Scholar
Kazmierczak, J., and Pszczolkowski, A. 1969. Burrows of Enteropneusta in Muschelkalk (Middle Triassic) of the Holy Cross Mountains, Poland. Acta Palaeontologica Polonica, 14:299324.Google Scholar
Kennedy, W. J., and Garrison, R.E. 1975. Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology, 22:311386.CrossRefGoogle Scholar
Kershaw, S., and Smith, R. 1986. A Bathonian hardground at Foss Cross near Cirencester. Proceedings of the Cotteswold Naturalists Field Club, 39:165179.Google Scholar
Kobluk, D. R. 1981. The record of early cavity-dwelling (coelobiontic) organisms in the Paleozoic. Canadian Journal of Earth Sciences, 18:181190.CrossRefGoogle Scholar
Kobluk, D. R. 1988. Pre-Cenozoic fossil record of cryptobionts and their presence in early reefs and mounds. Palaios, 3:243250.CrossRefGoogle Scholar
Kobluk, D. R., James, N.P., and Pemberton, S.G. 1978. Initial diversification of macroboring ichnofossils and exploitation of the macroboring niche in the Lower Paleozoic. Paleobiology, 4:163170.CrossRefGoogle Scholar
Kobluk, D. R., Pemberton, S. G., Karplyi, M., and Risk, M.J. 1977. The Silurian-Devonian disconformity in southern Ontario. Canadian Bulletin of Petroleum Geology, 25:11571186.Google Scholar
Koch, D.L., and Strimple, H.L. 1968. A new Upper Devonian cystoid attached to a discontinuity surface. Iowa Geological Survey, Report of Investigations, 5:149.Google Scholar
Lewis, R.D., Sprinkle, J., Bailey, J.B., Moffit, J., and Parsley, R.L. 1987. Mandalacystis, a new rhipidocystid eocrinoid from the Whiterockian Stage (Ordovician) in Oklahoma and Nevada. Journal of Paleontology, 61:12221235.CrossRefGoogle Scholar
Lidgard, S. 1985. Zooid and colony growth in encrusting cheilostome bryozoans. Palaeontology, 28:255291.Google Scholar
Macarovici, N. 1969. Observations sur la présence de certains lamellibranches lithophages fossiles du Miocène dans le sud-est l'Europe et dans la Mer Noire. American Zoologist, 9:721724.CrossRefGoogle Scholar
Marquez-Aliaga, E., Hirsch, F., and Lopez-Garrido, A.C. 1986. Middle Triassic bivalves from the Hornos-Siles Formation (Sephardic Province, Spain). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 173:201227.CrossRefGoogle Scholar
Mergl, M. 1984. Marcusodictyum, an encrusting bryozoan from the Lower Ordovician (Tremadocian) of Bohemia. Vestnik Ustredního ústavu geologického, 59:171172.Google Scholar
Muller, A.H. 1956. Eitere beiträge zur ichnologie, stratinomie und ökologie de germanischen Trias 1. Geologie, 5:405414.Google Scholar
Palmer, T.J. 1978. Burrows at certain omission surfaces in the Middle Ordovician of the upper Mississippi Valley. Journal of Paleontology, 52:109117.Google Scholar
Palmer, T.J. 1979. The Hampen Marly and White Limestone formations: Florida-type carbonate lagoons in the Jurassic of central England. Palaeontology, 22:189228.Google Scholar
Palmer, T.J. 1982. Cambrian to Cretaceous changes in hardground communities. Lethaia, 15:309323.CrossRefGoogle Scholar
Palmer, T.J., and Fürsich, F.T. 1974. The ecology of a Middle Jurassic hardground and crevice fauna. Palaeontology, 17:507524.Google Scholar
Palmer, T.J., and Palmer, C.D. 1977. Faunal distribution and colonization strategy in a Middle Ordovician hardground community. Lethaia, 10:179199.CrossRefGoogle Scholar
Pemberton, S.G., Kobluk, D.R., Ross, K.Y., and Risk, M.J. 1980. The boring Trypanites at the Silurian-Devonian disconformity in southern Ontario. Journal of Paleontology, 54:12581266.Google Scholar
Pianovskaya, I.A., and Hecker, R.F. 1966. Rocky shores and hardgrounds of the Cretaceous and Palaeogene seas in central Kyzyl Kum and their inhabitants, p. 222245. In Organisms and Environments in the Geological Past – A symposium. Nauka (Moscow).Google Scholar
Pojeta, J. Jr., and Palmer, T.J. 1976. The origin of rock boring in mytilacean pelecypods. Alcheringa, 1:167179.CrossRefGoogle Scholar
Radwanski, A. 1959. Littoral structures (cliff, clastic dikes and veins, and borings of Potamilla) in the high-tatric Lias. Acta Geologica Polonica, 9:270280.Google Scholar
Radwanski, A. 1964. Boring animals in Miocene littoral environments of southern Poland. Bulletin Polish Academy Sciences, Serie des Science Geology et Geography, 12:5762.Google Scholar
Radwanski, A. 1965. Additional notes on Miocene littoral structures of southern Poland. Bulletin Polish Academy of Sciences, Serie des Science Geology et Geography, 13:167173.Google Scholar
Radwanski, A. 1968. Tortonian cliff deposits at Zahorska Bystrica near Bratislava (southern Slovakia). Bulletin Polish Academy of Sciences, Serie des Science Geology et Geography, 16:97102.Google Scholar
Radwanski, A. 1969. Lower Tortonian transgression onto the southern slopes of the Holy Cross Mountains. Acta Geologica Polonica, 19:1164.Google Scholar
Radwanski, A. 1970. Dependence of rock-borers and burrowers on the environmental conditions within the Tortonian littoral zone of southern Poland, p. 371390. In Crimes, T.P. and Harper, J.C. (eds.), Trace Fossils. Geological Journal Special Issue 3, Seel House Press, Liverpool.Google Scholar
Roniewicz, P. 1970. Borings and burrows in the Eocene littoral deposits of the Tatra Mountains, Poland, p. 439446. In Crimes, T.P. and Harper, J.C. (eds.), Trace Fossils. Geological Journal Special Issue 3, Seel House Press, Liverpool.Google Scholar
Roniewicz, E., and Roniewicz, P. 1968. Hardground in the coraliferous Kimmeridgian deposits of the Holy Cross Mts. (Central Poland). Acta Geologica Polonica, 18:375385.Google Scholar
Schloz, W. 1972. Zur Bildungsgeschichte der Oolithenbank (Hettangium) in Baden-Württemberg. Arbeiten Institute Geologie Paläontologie Universitie Stuttgart, 67:101212.Google Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia, p. 209250. In Hallam, A. (ed.), Patterns of Evolution as Illustrated by the Fossil Record. Elsevier, Amsterdam.CrossRefGoogle Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science, 203:458461.CrossRefGoogle ScholarPubMed
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos, p. 479625. In Tevesz, M. J. S., and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.CrossRefGoogle Scholar
Vermeij, G.J. 1977. The Mesozoic marine revolution: Evidence from snails, predators and grazers. Paleobiology, 3:245258.CrossRefGoogle Scholar
Vermeij, G.J. 1978. Biogeography and Adaptation: Patterns of Marine Life. Harvard University Press, Cambridge. 332 p.Google Scholar
Vermeij, G.J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press, Princeton. 527 p.CrossRefGoogle Scholar
Vail, P. R., Mitchum, R. M. Jr., and Thompson Iii, S. 1977. Seismic stratigraphy and global changes of sea level, part 4: Global cycles of relative changes of sea level, p. 8397. In Payton, C. E. (ed.), Seismic stratigraphy–Applications to Hydrocarbon Exploration. American Associaion of Petroleum Geologists Memoir 26.Google Scholar
Voigt, E. 1959. Die ökologische Bedeutung der Hartgründe (“Hardgrounds”) in der oberen Kriede. Paläontologische Zeitschrift, 33:129147.CrossRefGoogle Scholar
Voigt, E. 1970. Foraminiferen und (?) Phoronidea als Kommensalen auf den Hartgründen der Maastrichter Tuffkreide. Paläontologische Zeitschrift, 44:8692.CrossRefGoogle Scholar
Voigt, E. 1973. Environmental conditions of bryozoan ecology of the hardground biotope of the Maastrichtian tuff-chalk, near Maastricht (Netherlands), p. 185197. In Larwood, G.P. (ed.), Living and Fossil Bryozoa. Academic Press, London.Google Scholar
Voigt, E. 1987. Thalassinoid burrows in the Maastrichtian Chalk Tuff near Maastricht (The Netherlands) as a fossil hardground microcavern biotope of Cretaceous bryozoans. In Ross, J. R. P. (ed.). Bryozoa: Present and Past, p. 293300. Western Washington University, Bellingham.Google Scholar
Wendt, J. 1971. Genese und Fauna submariner sedimentarer Spaltenfullungen im mediterranen Jura. Palaeontographica, Abt. A, 136:121192.Google Scholar
Wilson, M.A. 1985. Disturbance and ecologic succession in an Upper Ordovician cobble-dwelling hardground fauna. Science, 228:575577.CrossRefGoogle Scholar
Wilson, M.A. 1986. Coelobites and spatial refuges in a Lower Cretaceous cobble-dwelling hardground fauna. Palaeontology, 29:691703.Google Scholar
Wilson, M.A. 1987. Ecological dynamics on pebbles, cobbles, and boulders. Palaios, 2:594599.CrossRefGoogle Scholar
Wilson, M.A., and Palmer, T.J. 1988. Nomenclature of a bivalve boring from the Upper Ordovician of the midwestern United States. Journal of Paleontology, 62:306308.CrossRefGoogle Scholar