Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T11:39:21.470Z Has data issue: false hasContentIssue false

Trilobite diversity patterns in an Upper Cambrian stage

Published online by Cambridge University Press:  08 February 2016

Stephen R. Westrop*
Affiliation:
Centre for Sedimentary Studies, Department of Geological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada

Abstract

Recovery of trilobite faunas following a mass extinction during the Upper Cambrian Sunwaptan Stage (equal to the “Ptychaspid Biomere”) involved increases in both within-habitat (alpha) diversity and in levels of biofacies differentiation. This pattern parallels, at a lower hierarchical level, the global increase in Phanerozoic marine invertebrate species richness (Sepkoski et al. 1981), which was influenced by changes in provinciality and in alpha diversity. Diversification slowed markedly in subtidal shelf carbonate habitats in the upper half of the stage, but continued in carbonate shelf margin environments, possibly due to higher rates of immigration from off-shelf sites. Trilobite clades appearing early in the stage have low centers of gravity, reflecting high immigration rates during and shortly after an interval of mass extinction. Expansion of shallow-water carbonate deposition in the upper half of the stage was accompanied by the spread of carbonate bank biofacies. Families occurring in these biofacies gradually increased in species richness and tended to have high centers of gravity.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bayer, U. and McGhee, G. R. 1985. Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors. Ammonite replacements in the German Lower and Middle Jurassic. Pp. 164220. In Bayer, U., and Seilacher, A. (eds.), Sedimentary and Evolutionary Cycles. Lecture Notes in Earth Sciences 1.CrossRefGoogle Scholar
Bell, W. C., Feniak, O. W., and Kurtz, V. E. 1952. Trilobites of the Franconia Formation, southern Minnesota. Journal of Paleontology 36:385423.Google Scholar
Berg, R. R. 1953. Franconian trilobites from Minnesota and Wisconsin. Journal of Paleontology 27:553568.Google Scholar
Carthew, R. and Bosence, D. 1986. Community preservation in Recent shell gravels, English Channel. Palaeontology 29:243268.Google Scholar
Fortey, R. A. 1983. Cambrian–Ordovician trilobites from the boundary beds in western Newfoundland and their phylogenetic significance. Special Papers in Paleontology 30:179211.Google Scholar
Gould, S. J., Gilinsky, N. L., and German, R. Z. 1987. Asymmetry of lineages and the direction of evolutionary time. Science 236:14371441.CrossRefGoogle ScholarPubMed
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology 3:2340.CrossRefGoogle Scholar
Grant, R. E. 1962. Trilobite distribution, Upper Franconia Formation (Upper Cambrian), southeastern Minnesota. Journal of Paleontology 36:965998.Google Scholar
Grant, R. E. 1965. Faunas and stratigraphy of the Snowy Range Formation (Upper Cambrian) in southwestern Montana and northwestern Wyoming. Geological Society of America Memoir 96:1171.CrossRefGoogle Scholar
Hallam, A. 1963. Eustatic control of major cyclic changes in Jurassic sedimentation. Geological Magazine 100:444450.CrossRefGoogle Scholar
Hallam, A. 1987. Radiations and extinctions in relation to environmental change in the marine Lower Jurassic of northwest Europe. Paleobiology 13:152168.CrossRefGoogle Scholar
Hardy, M. E. 1985. Testing for adaptive radiation: the Ptychaspid (Trilobita) Biomere of the Cambrian. Pp. 379397. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns. Profiles in Macroevolution. Princeton University Press; Princeton, New Jersey.Google Scholar
Longacre, S. A. 1970. Trilobites of the Upper Cambrian Ptychaspid Biomere, Wilberns Formation, central Texas. Paleontological Society Memoir 4 (Journal of Paleontology 44(1): suppl.).Google Scholar
Ludvigsen, R. 1982. Upper Cambrian and Lower Ordovician trilobite biostratigraphy of the Rabbitkettle Formation, western District of Mackenzie. Life Sciences Contributions, Royal Ontario Museum 134. 188 pp.Google Scholar
Ludvigsen, R. and Westrop, S. R. 1983. Trilobite biofacies of the Cambrian–Ordovician boundary interval in northern North America. Alcheringa 7:301319.CrossRefGoogle Scholar
Ludvigsen, R. and Westrop, S. R. 1985. Three new Upper Cambrian stages for North America. Geology 13:139143.2.0.CO;2>CrossRefGoogle Scholar
Ludvigsen, R., Westrop, S. R., and Kindle, C. H. In press. Sunwaptan (Upper Cambrian) trilobites of the Cow Head Group, western Newfoundland. Paleontographica Canadiana 6.Google Scholar
Nelson, C. A. 1951. Cambrian trilobites from the St. Croix Valley. Journal of Paleontology 25:765784.Google Scholar
Peterson, C. H. 1977. The paleoecological significance of undetected short-term temporal variation. Journal of Paleontology 51:976981.Google Scholar
Raasch, G. O. 1951. Revision of Croixan dikelocephalids. Transactions of the Illinois Academy of Sciences 44:137151.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.CrossRefGoogle ScholarPubMed
Raup, D. M. 1976. Species diversity during the Phanerozoic: an interpretation. Paleobiology 3:289297.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.CrossRefGoogle Scholar
Signor, P. W. 1985. Real and apparent trends in species richness through time. Pp. 129150. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns. Profiles in Macroevolution. Princeton University Press; Princeton, New Jersey.Google Scholar
Sokal, R. R. and Rohlf, F. J. 1981. Biometry (Second Edition). W. H. Freeman and Company; San Francisco. 859 pp.Google Scholar
Staff, G. R., Stanton, R. J. Jr., Powell, E. N., and Cummins, H. 1986. Time averaging, taphonomy and their impact on paleocommunity reconstruction: death assemblages in Texas bays. Geological Society of America Bulletin 97:428443.2.0.CO;2>CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution: pattern and process. W. H. Freeman and Company; San Francisco. 332 pp.Google Scholar
Stitt, J. H. 1971a. Repeating evolutionary pattern in Late Cambrian trilobite biomeres. Journal of Paleontology 45:178181.Google Scholar
Stitt, J. H. 1971b. Late Cambrian and earliest Ordovician trilobites, Timbered Hills and lower Arbuckle Groups, western Arbuckle Mountains, Murray County, Oklahoma. Oklahoma Geological Survey Bulletin 110. 83 pp.Google Scholar
Stitt, J. H. 1975. Adaptive radiation, trilobite paleoecology and extinction, Ptychaspid biomere, Late Cambrian of Oklahoma. Fossils and Strata 4:381390.CrossRefGoogle Scholar
Stitt, J. H. 1977. Late Cambrian and earliest Ordovician trilobites, Wichita Mountains area, Oklahoma. Oklahoma Geological Survey Bulletin 124. 79 pp.Google Scholar
Stitt, J. H. 1983. Trilobite biostratigraphy and lithostratigraphy of the McKenzie Hill Limestone, Wichita and Arbuckle mountains, Oklahoma. Oklahoma Geological Survey Bulletin 134. 54 pp.Google Scholar
Taylor, M. E. 1977. Late Cambrian of western North America: trilobite biofacies, environmental significance and biostratigraphic implications. Pp. 197245. In Kauffman, E. G., and Hazel, J. E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchison and Ross; Stroudsberg, Pennsylvania.Google Scholar
Taylor, M. E. and Forester, R. M. 1979. Distributional model for marine isopod crustaceans and its bearing on early Palaeozoic biogeography and continental drift. Geological Society of America Bulletin 90:405413.2.0.CO;2>CrossRefGoogle Scholar
Ulrich, E. O. and Resser, C. E. 1930. The Cambrian of the Upper Mississippi Valley, Part 1, Trilobita; Dikelocephalinae and Osceolinae. Public Museum of Milwaukee Bulletin 12:1122.Google Scholar
Ulrich, E. O. and Resser, C. E. 1933. The Cambrian of the Upper Mississippi Valley, Part 2, Trilobita; Saukiinae. Public Museum of Milwaukee Bulletin 12:123206.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic diversity and ecologic structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. and Jablonski, D. 1983. Speciation in the shallow sea: general patterns and biogeographic controls. Pp. 201226. In Simms, R. W., Price, J. H., and Whalley, P. E. S. (eds.), Evolution, Time and Space. The Emergence of the Biosphere. Systematics Association Special Volume 23.Google Scholar
Warme, J. E., Ekdale, A. A., Ekdale, S. F., and Peterson, C. H. 1976. Raw material of the fossil record. Pp. 143169. In Scott, R. W., West, R. W. (eds.), Structure and Classification of Paleocommunities. Dowden, Hutchison and Ross; Stroudsburg, Pennsylvania.Google Scholar
Westrop, S. R. 1984. Late Cambrian and earliest Ordovician trilobites, southern Canadian Rocky Mountains, Alberta. Unpublished Ph.D. thesis, University of Toronto. Toronto, Ontario. 990 pp.Google Scholar
Westrop, S. R. 1986. Trilobites of the Upper Cambrian Sunwaptan Stage, southern Canadian Rocky Mountains, Alberta. Palaeontographica Canadiana 3. 179 pp.Google Scholar
Westrop, S. R. and Ludvigsen, R. 1987. Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary. Paleobiology 13:8499.CrossRefGoogle Scholar