Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T06:47:24.269Z Has data issue: false hasContentIssue false

Rates of evolution

Published online by Cambridge University Press:  08 April 2016

Steven M. Stanley*
Affiliation:
Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218

Abstract

For some higher taxa, species can be identified in the fossil record with a high degree of reliability. The great geological durations of species indicate that phyletic evolution is normally so slow that little change occurs within a lineage during 105–107 generations. Failure to recognize sibling species in the fossil record has no bearing on this conclusion because they embody virtually no morphological change. Although slowness is the rule, we have no more precise assessment of morphological rates of phyletic evolution for any major taxon. Morphological data that have been assembled to assess rates of phyletic evolution have been meager, unrepresentative, and predominantly reflective of nothing more than body size. Net selection pressures within long segments of phylogeny—even ones that embrace large amounts of evolution—are infinitesimal and seemingly unsustainable against random fluctuations. This suggests that natural selection operates in a highly episodic fashion.

Rates of adaptive radiation and extinction at the species level can be estimated for many taxa and, from them, rates of speciation in adaptive radiation. Species selection should universally tend to increase rate of speciation and decrease rate of extinction, yet these rates are positively correlated in the animal world, apparently because they are linked by common controls: both rate of speciation and rate of extinction seem to increase with level of stereotypical behavior and to decrease with dispersal ability. Only a few “supertaxa” have been able to combine high rates of speciation with moderate rates of extinction.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P. 1980. Ontogenesis and morphological diversification. Amer. Zool. 20:653667.Google Scholar
Andrews, G. W. 1976 Miocene marine diatoms from the Choptank Formation, Calvert County, Maryland. U.S. Geol. Surv. Prof. Paper 910.Google Scholar
Auffenberg, W. 1963. The fossil snakes of Florida. Tulane Stud. Zool. 10:131216.Google Scholar
Berggren, W. A. 1969. Rates of evolution in some Cenozoic planktonic foraminifera. Micropaleont. 15:351365.Google Scholar
Bookstein, F. L.Gingerich, P. D., and Kluge, A. G. 1978. Hierarchical linear modeling of the tempo and mode of evolution. Paleobiology. 4:120134.Google Scholar
Brinkmann, R. 1929. Statistisch-biostratigraphische Untersuchungen an mitteljurassischen Ammoniten über Artbegrift und Stammesenwicklung. Abh. Ges. Wiss. Göttingen, Math-Phys. Kl., N. F. 13:1249.Google Scholar
Buzas, M. A. and Culver, S. J. 1984. Species duration and evolution: benthic Foraminifera on the Atlantic continental margin of North America. Science. 225:829830.Google Scholar
Coope, G. R. 1970. Interpretations of Quaternary insect fossils. Ann. Rev. Entomol. 15:97120.CrossRefGoogle Scholar
Davis, S. J. M. 1981. The effects of temperature change and domestication on the body size of Late Pleistocene to Holocene mammals of Israel. Paleobiology. 7:101114.Google Scholar
Dicksen, J. H. 1973. Bryophytes of the Pleistocene: The British Record and Its Chronological and Ecological Implications. Cambridge Univ. Press; Cambridge.Google Scholar
Eldredge, N. 1971. The allopatric model and phylogeny in Paleozoic invertebrates. Evolution. 25:156167.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper & Co.; San Francisco.Google Scholar
Emiliani, C. 1982. Extinctive evolution. J. Theor. Biol. 97:1333.Google Scholar
Gazin, C. L. 1968. A study of the Eocene condylarthran mammal Hyopsodus. Smithson. Misc. Coll. 153:190.Google Scholar
Giunsky, N. L. 1981. Stabilizing species selection in the Archaeogastropoda. Paleobiology. 7:316331.Google Scholar
Gillespie, J. H. and Ricklefs, R. E. 1979. A note on the estimation of species duration distributions. Paleobiology. 5:6062.CrossRefGoogle Scholar
Gingerich, P. D. 1974. Stratigraphic record of Early Eocene Hyopsodus and the geometry of mammalian phylogeny. Nature. 248:107109.CrossRefGoogle Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. Amer. Jour. Sci. 276:128.Google Scholar
Gingerich, P. D. 1983. Rates of evolution: effects of time and temporal scaling. Science. 222:159161.CrossRefGoogle ScholarPubMed
Gould, S. J. 1982. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. Pp. 83104. In: Milkman, R., ed. Perspectives on Evolution. Sinauer; Sunderland, Mass.Google Scholar
Gould, S. J. 1984. Gingerich's smooth curve of evolutionary rate: a psychological and mathematical artifact. Science. 226:994995.Google Scholar
Hallam, A. 1975. Evolutionary size increase and longevity in Jurassic bivalves and ammonites. Nature. 258:493496.CrossRefGoogle Scholar
Hallam, A. 1978. How rare is phyletic gradualism and what is its evolutionary significance? Evidence from Jurassic bivalves. Paleobiology. 4:1625.CrossRefGoogle Scholar
Hansen, T. A. 1978. Larval dispersal and species longevity in lower Tertiary gastropods. Science. 199:885887.Google Scholar
Hayami, I. 1984. Natural history and evolution of Cryptopecten (a Cenzoic-Recent pectinid genus). Univ. Museum, Univ. of Tokyo, Bull. 24. 149 pp.Google Scholar
Hennig, W. 1966. Fannia scalaris Fabricius, eine rezente Art in Baltischen Bernstein. Stuttgarter Beiträge zur Naturkunde. 150:112.Google Scholar
Hoffman, A. and Kitchell, J. A. 1984. Evolution in a pelagic planktic system: a paleobiologic test of models of multispecies evolution. Paleobiology. 10:933.Google Scholar
Kauffman, E. G. 1978. Evolutionary rates and patterns among Cretaceous bivalves. R. Soc. Lond. Philos. Trans. 284B:277304.Google Scholar
Kellogg, D. E. 1975. The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria). Paleobiology. 1:359370.Google Scholar
Kennedy, G. E. 1983. A morphometric and taxonomic assessment of a hominine femur from the Lower Member, Koobi Fora, Lake Turkana. Amer. J. Phys. Anthropol. 61:429436.Google Scholar
Koch, C. F. 1980. Bivalve species duration, areal extent and population size in a Cretaceous sea. Paleobiology. 6:184192.Google Scholar
Kurtén, B. 1959. On the longevity of mammalian species in the Tertiary. Soc. Sci. Fenn. Commentat. Biol. 21:114.Google Scholar
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution. 30:314334.Google Scholar
Leopold, E. B. 1967. Late Cenozoic patterns of plant extinction. Pp. 203246. In: Martin, P. S. and Wright, H. E. Jr., eds. Pleistocene Extinctions: The Search for a Cause. Yale Univ. Press; New Haven, Conn.Google Scholar
Lerner, I. M. 1954. Genetic Homeostasis. Oliver & Boyd; Edinburgh.Google Scholar
Leveque, F. and Vandermeersch, B. 1981. Le Néandertalien de Sainte-Césaire. La Recherche. 12:241244.Google Scholar
Levinton, J. S. 1983. Stasis in progress: the empirical basis of macroevolution. Amer. Rev. Ecol. Syst. 14:103137.Google Scholar
Levinton, J. S. and Ginzburg, L. 1984. Repeatability of taxon longevity in successive foraminifera radiations and a theory of random appearance and extinction. Proc. Nat. Acad. Sci. U.S.A. 81:54785481.CrossRefGoogle Scholar
Levinton, J. S. and Simon, C. M. 1980. A critique of the punctuated equilibria model and implications for the detection of speciation in the fossil record. Syst. Zool. 29:130142.Google Scholar
Lewis, H. 1966. Speciation in flowering plants. Science. 152:167172.CrossRefGoogle ScholarPubMed
McAlester, A. L. 1963. Pelecypods as stratigraphic guides in the Appalachian Upper Devonian. Geol. Soc. Amer. Bull. 74:12091224.Google Scholar
Malmgren, B. A. and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage. Paleobiology. 7:230240.Google Scholar
Marshall, L. G. and Corruccini, R. S. 1978. Variability, evolutionary rates, and allometry in dwarfing lineages. Paleobiology. 4:101119.Google Scholar
Martinell, T. and Hoffman, A. 1983. Species duration patterns in the Pliocene gastropod fauna of Empordá (northeast Spain). N. Jahrb. Geol. Paläontol. Mh. 11:698704.Google Scholar
Mayr, E. 1963. Animal Species and Evolution. 797 pp. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Newman, W. A. 1985. The abyssal hydrothermal vent invertebrate fauna: a glimpse of antiquity? In: Jones, M. L., ed. The Hydrothermal Vents of the Eastern Pacific: An Overview. Bull. Biol. Soc. Washington. 6. in press.Google Scholar
Palmer, A. R. 1965. Trilobites of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States. U.S. Geol. Surv. Prof. Paper 493.Google Scholar
Raup, D. M. 1975. Taxonomic survivorship curves and Van Valen's Law. Paleobiology. 1:8296.Google Scholar
Raup, D. M. and Crick, R. E. 1981. Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology. 7:200215.Google Scholar
Reeside, J. B. and Cobban, W. A. 1960. Studies of The Mowry Shale (Cretaceous) and contemporary formations in the United States and Canada. U.S. Geol. Surv. Prof. Paper 355.Google Scholar
Richards, R. B. 1977. Patterns of evolution in the graptolites. Pp. 333358. In: Hallam, A., ed. Patterns of Evolution, as Illustrated by the Fossil Record. Elsevier; Amsterdam.Google Scholar
Rightmire, G. P. 1981. Patterns in the evolution of Homo erectus. Paleobiology. 71:241246.Google Scholar
Rose, K. D. and Bown, T. M. 1984. Gradual phyletic evolution at the generic level in early Eocene omomyid primates. Nature. 309:250252.Google Scholar
Schankler, D. 1980. Faunal zonation of the Willwood Formation in the central Big Horn Basin, Wyoming. Univ. Michigan Pap. Paleontol. 24:99114.Google Scholar
Schopf, T. J. M. 1982. A critical assessment of punctuated equilibria. I. Duration of taxa. Evolution. 36:11441157.Google Scholar
Schopf, T. J. M. 1984. Rates of evolution and the notion of living fossils. Ann. Rev. Earth Planetary Sci. 12:245292.Google Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S. 1975. Genomic vs. morphologic rates of evolution: influence of morphologic complexity. Paleobiology 1:6370.Google Scholar
Sepkoski, J. J. 1975. Stratigraphic biases in the analysis of taxonomic survivorship. Paleobiology. 1:343355.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. 237 pp. Columbia Univ. Press; New York.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; New York.Google Scholar
Slatkin, M. 1981. A diffusion model of species selection. Paleobiology. 7:421425.Google Scholar
Stainforth, R. M., Lamb, J. L., Luterbacher, H., Beard, J. H., and Jeffords, R. M. 1975. Cenozoic Planktonic Foraminiferal Zonation and Characteristics of Index Forms. Univ. Kansas Paleont. Contrib. Art. 62.Google Scholar
Stanley, S. M. 1973. Effects of competition on rates of evolution, with special reference to bivalve mollusks and mammals. Syst. Zool. 22:486506.Google Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proc. Nat. Acad. Sci. U.S.A. 72:646650.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. 332 pp. W. H. Freeman; San Francisco.Google Scholar
Stanley, S. M. 1982. Macroevolution and the fossil record. Evolution. 36:460473.CrossRefGoogle ScholarPubMed
Stanley, S. M., Addicott, W. O., and Chinzei, K. 1980. Lyellian curves: possibilities and limitations. Geology. 8:422426.Google Scholar
Stanley, S. M. and Newman, W. A. 1980. Competitive exclusion in evolutionary time: the case of the acorn barnacles. Paleobiology. 6:173183.Google Scholar
Stebbins, G. L. 1982. Perspectives in evolutionary theory. Evolution. 36:11091119.CrossRefGoogle ScholarPubMed
Van Valen, L. 1974. Two modes of evolution. Nature. 252:290300.Google Scholar
Walker, A. 1984. Extinction in hominid evolution. Pp. 119152. In: Nitecki, M. H., ed. Extinctions. Univ. Chicago Press; Chicago.Google Scholar
Ward, P. D. and Signor, P. W. 1983. Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology. 9:183198.CrossRefGoogle Scholar
Wei, K.-Y. and Kennett, J. P. 1983. Nonconstant extinction rates of Neogene planktonic foraminifera. Nature. 305:218220.Google Scholar
West, R. M. 1979. Apparent prolonged evolutionary stasis in the primitive Eocene hoofed mammal Hyopsodus. Paleobiology. 5:252260.Google Scholar
Williamson, P. G. 1981. Paleontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature. 293:437443.Google Scholar
Wilson, M. V. H. 1983. Is there a characteristic rate of radiation for the insects? Paleobiology. 9:7985.Google Scholar