Skip to main content Accessibility help

PaleoENM: applying ecological niche modeling to the fossil record

  • Corinne E. Myers (a1), Alycia L. Stigall (a2) and Bruce S. Lieberman (a3)


Ecological niche modeling (ENM) is a quantitative approach to predict species’ abiotic requirements. It is a correlative technique, requiring geographically explicit information on species occurrences and the suites of environmental conditions experienced at each occurrence point. The output of these models is a set of environmental suitability rules that can be projected geographically and through time to test biogeographic, ecologic, and evolutionary hypotheses. Although developed by biologists and used extensively in the modern, ENM is in its early stages of application to the deep-time fossil record (hence PaleoENM). In part its limited use in the fossil record thus far reflects the methodological challenge of constructing paleoenvironmental layers needed for PaleoENM analysis, whereas in the modern these layers are available from large public databases (e.g., WorldClim). This paper provides a contextual and methodological framework for appropriately applying PaleoENM, including best practices for developing species occurrence and paleoenvironmental data sets for PaleoENM analyses.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      PaleoENM: applying ecological niche modeling to the fossil record
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      PaleoENM: applying ecological niche modeling to the fossil record
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      PaleoENM: applying ecological niche modeling to the fossil record
      Available formats



Hide All
Abe, F., and Lieberman, B. S.. 2012. Quantifying morphological change during an evolutionary radiation of Devonian trilobites. Paleobiology 38:292307.
Abbott, S. T., and Sweet, I. P.. 2000. Tectonic control on third-order sequences in a siliciclastic ramp-style basin: an example from the Roper Superbasin (Mesoproterozoic), northern Australia. Australian Journal of Earth Sciences 47:637657.
Allmon, W. D., and Ross, R. M.. 1990. Specifying causal factors in evolution: the paleontological contribution. Pp. 121in R. M. Ross and W. D. Allmon, eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.
Anderson, R. P., Lew, D., and Peterson, A. T.. 2003. Evaluating predictive models of species distributions: criteria for selecting optimal models. Ecological Modelling 162:211232.
Araújo, M. B., and Peterson, A. T.. 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93:15271539.
Araújo, M. B., and Rahbek, C.. 2006. How dos climate change affect biodiversity? Science 313:13961397.
Araújo, M. B., Thuiller, W., and Yoccoz, N.. 2009. Re-opening the climate envelope reveals macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences USA 106:E45E46.
Austin, M. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modeling. Ecological Modelling 157:101118.
Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200:119.
Barnosky, A. D. 2001. Distinguishing the effects of the red queen and court jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology 21:172185.
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., and Villalobos, F.. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222:18101819.
Boucot, A. J. 1981. Principles of benthic marine paleoecology. Academic Press, New York.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, T., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.. 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum, Part 1. Experiments and large-scale features. Climate of the Past 3:261277.
Brame, H.-M., and Stigall, A. L.. 2014. Controls on niche stability in geologic time: congruent responses to biotic and abiotic environmental changes among Cincinnatian (Late Ordovician) marine invertebrates. Paleobiology 40:7090.
Brenchley, P. J., and Harper, D. A. T.. 1998. Palaeoecology: ecosystems, environments and evolution. Chapman and Hall, London.
Broennimann, O., Treier, U. A., Müller-Schärer, H., Thuiller, W., Peterson, A. T., and Guisan, A.. 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters 10:701709.
Carroll, R. L. 2000. Towards a new evolutionary synthesis. Trends in Ecology and Evolution 15:2732.
Cobban, W. A., and Reeside, J. B. Jr. 1952. Correlation of the Cretaceous formations of the Western Interior of the United States. Bulletin of the Geological Society of America 63:10111044.
Cobban, W. A., Walaszczyk, I., Obradovich, J. D., and McKinney, K. C.. 2006. A USGS zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. USGS Open-File Report 2006-1250.
Congreve, C. R. 2013. Clade turnover: the end Ordovician as a large scale analog of species turnover. In E. E. Saupe, C. E. Myers, and C. R. Congreve, eds. Macroevolution and the modern synthesis (Palaeontology Special Issue). Palaeontology 56:12851296.
Cracraft, J. 1982. A nonequilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Systematic Zoology 31:348365.
Creaney, S., and Passey, Q. R.. 1993. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. American Association of Petroleum Geologists Bulletin 77:386401.
Dennis, K. J., Cochran, J. K., Landman, N. H., and Schrag, D. P.. 2013. The climate of the Late Cretaceous: new insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossils. Earth and Planetary Science Letters 362:5165.
Droser, M. L., and Bottjer, D. J.. 1993. Trends and patterns of Phanerozoic ichnofabrics. Annual Review of Earth and Planetary Sciences 21:205225.
Dudei, N. L., and Stigall, A. L.. 2010. Using ecological nichemodeling to assess biogeographic and niche response of brachiopod species to the Richmondian invasion (Late Ordovician) in the Cincinnati Arch. Palaeogeography, Palaeoclimatology, Palaeoecology 296:2843.
Eiler, J. M. 2011. Paleoclimate reconstruction using carbon clumped isotope thermometry. Quaternary Science Reviews 30:35753588.
Elith, J., and Graham, C. H.. 2009. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:6677.
Elith, J., and Leathwick, J. R.. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40:677697.
Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S., and Zimmermann, N. E.. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129151.
Elith, J., Kearney, M., and Phillips, S.. 2010. The art of modeling range-shifting species. Methods in Ecology and Evolution 1:330342.
Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., and Yates, C. J.. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17:4357.
ESRI (Environmental Systems Research Institute). 2006. ARCGIS, Version 9.2. ESRI, Redlands, Calif.
Franklin, J. 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge.
Fürsich, F. T. 1993. Palaeoecology and evolution of Mesozoic salinity-controlled macroinvertebrate associations. Lethaia 26:327346.
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:212.
Gould, S. J. 2002. The structure of evolutionary theory. Belknap Press of Harvard University Press, Cambridge.
Graham, C. H., and Hijmans, R. J.. 2006. A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography 15:578587.
Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J., and Moritz, C.. 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58:17811793.
Graham, C. H., VanDerWal, J., Phillips, S. J., Moritz, C., and Williams, S. E.. 2010. Dynamic refugia and species persistence: tracking spatial shifts in habitat through time. Ecography 33:10621069.
Grinell, J. 1917. The niche-relationships of the California Thrasher. Auk 34:427433.
Guisan, A., and Thuiller, W.. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8:9931009.
Guisan, A., and Zimmerman, N. E.. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135:147186.
Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., and Peterson, A. T.. 2007. What matters for predicting the occurrences of trees: techniques, data, or species’ characteristics? Ecological Monographs 77:615630.
Hallam, A. 1981. Relative importance of plate movements, eustasy, and climate in controlling major biogeographical changes since the early Mesozoic. Pp. 303330in N. Nelson and D. E. Rosen, eds. Vicariance biogeography: a critique. Columbia University Press, New York.
Haywood, A. M., Dowsett, H. J., Robinson, M. M., Stoll, D. K., Dolan, A. M., Lunt, D. J., Otto-Bliesner, B., and Chandler, M. A.. 2011. Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2). Geoscientific Model Development 4:571577.
Heim, N. A., and Peters, S. E.. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:e18946.
Hernandez, P. A., Graham, C. H., Master, L. L., and Albert, D. L.. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773785.
Hijmans, R. J., and Graham, C. H.. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12:22722281.
Hirzel, A. H, Helfer, V., and Metral, F. 2001. Assessing habitat-suitability models with a virtual species. Ecological Modelling 145:111121.
Hortal, J., Jiménez-Valverde, A., Gomez, J. F., Lobo, J. M., and Baselga, A.. 2008. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847858.
Jablonski, D. 2001. Lessons from the past: evolutionary impacts of mass extinctions. Proceedings of the National Academy of Sciences USA 98:53935398.
Jablonski, D., and Raup, D. M.. 1995. Selectivity and end-Cretaceous marine bivalve extinctions. Science 268:389391.
Jiménez-Valverde, A., Lobo, J. M., and Hortal, J.. 2008. Not as good as they seem: the importance of concepts in species distribution modeling. Diversity and Distributions 14:885890.
Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., and Lobo, J. M.. 2011a. Use of niche models in invasive species risk assessment. Biological Invasions 13:27852797.
Jiménez-Valverde, A., Barve, N., Lira-Noriega, A., Maher, S. P., Kakazawa, Y., Papes, M., Soberón, J., Sukumaran, J., and Peterson, A. T.. 2011b. Dominant climate influences on North American bird distributions. Global Ecology and Biogeography 20:114118.
Johnson Ibach, J. E. 1982. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. American Association for Petroleum Geologists Bulletin 66:170188.
Kammer, T. W., Baumiller, T. K., and Ausich, W. I.. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25:219222.
Kauffman, E. G. 1969. Cretaceous marine cycles of the Western Interior. Mountain Geologist 6:227245.
Knoll, A. H. 1989. Evolution and extinction in the marine realm: some constraints imposed by phytoplankton. Philosophical Transactions of the Royal Society of London B 325:279290.
Knoll, A. H. 2012. Systems paleobiology. Geological Society of America Bulletin 125:256266.
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P.. 1996. Comparative earth history and the Late Permian mass extinction. Science 273:452457.
Kozak, K. H., and Wiens, J. J.. 2006. Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60:26042621.
Kozak, K. H., and Wiens, J. J.. 2010. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecology Letters 13:13781389.
Lieberman, B. S. 2000. Paleobiogeography: using fossils to study global change, plate tectonics, and evolution. Kluwer Academic/Plenum, New York.
Lieberman, B. S. 2003. Paleobiogeography: the relevance of fossils to biogeography. Annual Review of Ecology and Systematics 34:5169.
Lieberman, B. S. 2012. Adaptive radiations in the context of macroevolutionary theory: a paleontological perspective. Evolutionary Biology 39:181191.
Lieberman, B. S., Miller, W. III, and Eldredge, N.. 2007. Paleontological patterns, macroecological dynamics, and the evolutionary process. Evolutionary Biology 34:2848.
Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range, and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.
Losos, J. B. 2008. Phylogenetic niche conservation, phylogenetic signal, and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11:9951007.
Maguire, K. C., and Stigall, A. L.. 2008. Paleobiogeography of Miocene Equinae of North America: a phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeography, Palaeoclimatology, Palaeoecology 267:175184.
Maguire, K. C., and Stigall, A. L.. 2009. Using ecological niche modeling for quantitative biogeographic analysis: a case study of Miocene and Pliocene Equinae in the Great Plains. Paleobiology 35:587611.
Malizia, R. W., and Stigall, A. L.. 2011. Niche stability in Late Ordovician articulated brachiopod species before, during, and after the Richmondian invasion. Palaeogeography, Palaeoclimatology, Palaeoecology 311:154170.
Martin, L. J., Blossey, B., and Ellis, E.. 2012. Mapping where ecologists work: bias in the global distribution of terrestrial ecological observations. Frontiers in Ecology and the Environment 10:195201.
Martínez-Meyer, E., Peterson, A. T., and Hargrove, W. W.. 2004. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography 13:305314.
Martínez-Meyer, E., Peterson, A. T., Servín, J. I., and Kiff, L. F.. 2006. Ecological niche modeling and prioritizing areas for species reintroductions. Oryx 40:411418.
Menke, S. B., Holway, D. A., Fisher, R. N., and Jetz, W.. 2009. Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder. Global Ecology and Biogeography 18:5063.
Myers, C. E., and Lieberman, B. S.. 2011. Sharks that pass in the night: using GIS to investigate competition in the Cretaceous Western Interior Seaway. Proceedings of the Royal Society of London B 278:681689.
Myers, C. E., and Saupe, E. E.. 2013. A macroevolutionary expansion of the Modern Synthesis and the importance of extrinsic abiotic factors. In E. E. Saupe, C. E. Myers, and C. R. Congreve, eds. Macroevolution and the modern synthesis. Palaeontology Special Issue 56:11791198.
Neuendorf, K. K. E., Mehl, J. P. Jr., and Jackson, J. A.. 2005. Glossary of geology, 5th ed.American Geological Institute, Alexandria, Va.
Nogués-Bravo, D., Rodriguez, J., Hortal, J., Batra, P., and Araújo, M. B.. 2008. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biology 6:e79.
Owen, D. E., Forgas, A. M., Miller, S. A., Stelly, R. J., and Owen, D. E. Jr. 2005. Surface and subsurface stratigraphy of the Burro Canyon Formation, Dakota Sandstone, and intertongued Mancos Shale of the Chama Basin, New Mexico. In Geology of the Chama Basin. S. G. Lucas, K. E. Zeigler, V. W. Lueth, and D. E. Owen, eds. New Mexico Geological Society, Guidebook 56:218226.
Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., Ingenloff, K., Lira-Noriega, A., Hensz, C. M., Myers, C. E., and Peterson, A. T.. 2013. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling 263:1018.
Patzkowsky, M. E., and Holland, S. M.. 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.
Pearman, P. B., Guisan, A., Broennimann, O., and Randin, C. F.. 2008. Niche dynamics in space and time. Trends in Ecology and Evolution 23:149158.
Pearson, R. G., and Dawson, T. P.. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelop models useful? Global Ecology and Biogeography 12:361371.
Pearson, R. G., and Dawson, T. P.. 2004. Bioclimate envelope models: what they detect and what they hide—response to Hampe (2004). Global Ecology and Biogeography 13:471473.
Pearson, R. G., Raxworthy, C. J., Nakamura, M., and Peterson, A. T.. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34:102117.
Peterson, A. T. 2001. Predicting species’ geographic distributions based on ecological niche modeling. Condor 103:599605.
Peterson, A. T. 2003. Predicting the geography of species’ invasions via ecological niche modeling. Quarterly Review of Biology 78:419433.
Peterson, A. T. 2011. Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography 38:817827.
Peterson, A. T., Soberón, J., and Sanchez-Cordero, V.. 1999. Conservatism of ecological niches in evolutionary time. Science 285:12651267.
Peterson, A. T., Tian, H., Martínez-Meyer, E., Soberón, J., Sánchez-Cordero, V., and Huntley, B.. 2005. Modeling distributional shifts in individual species biomes. Pp. 211228in T. E. Lovejoy and L. Hannah, eds. Climate change and biodiversity. Yale University Press, New Haven, Conn.
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., and Araújo, M. B.. 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton, N.J.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Bamola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G., Delmotte, M., Kotylakov, V. M., Legrand, M., Lipenkov, V., Lorius, C., Pepin, I., Ritz, C., Saltzman, E., and Stiennard, M.. 1999. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. Nature 399:429436.
Pettijohn, F. J. 1957. Sedimentary Rocks, 2nd ed. Harper, New York, pp. 718.
Phillips, S. J., Dudik, M., and Schapire, R. E.. 2004. A maximum entropy approach to species distribution modeling. Pp. 655-662 in Proceedings of the 21st International Conference on Machine Learning, Banff, Alberta, Canada. ACM Press, New York.
Phillips, S. J., Anderson, R. P., and Schapire, R. E.. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231259.
Polly, P. D., and Eronen, J. T.. 2011. Mammal associations in the Pleistocene of Britain: implications of ecological niche modeling and a method for reconstructing palaeoclimate. Pp. 279304in N. Ashton, S. G. Lewis, and C. Stringer, eds. The ancient human occupation of Britain. Elsevier, Amsterdam.
Potter, P. E., Maynard, J. B., and Depetris, P. J.. 2005. Mud and mudstones: introduction and overview. Springer, New York.
Prothero, D. R., and Schwab, F.. 2004. Sedimentary geology: an introduction to sedimentary rocks and stratigraphy, 2nd ed.W. H. Freeman, New York.
Qiao, H., Soberón, J., Campbell, L., and Peterson, A. T.. 2012. Biodiversity informatic application: niche analyst user guide.
Raes, N. 2012. Partial vs. full species distribution models. Natureza & Conservação 10:127138.
Rangel, T. F. L. V. B., Diniz-Filho, J. A. F., and Colwell, R. K.. 2007. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. American Naturalist 170:602616.
Raup, D. M. 1994. The role of extinction in evolution. Proceedings of the National Academy of Sciences USA 91:67586763.
Raup, D. M., and Sepkoski, J. J.. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.
Reading, H. G. 1996. Sedimentary environments: processes, facies and stratigraphy, 3rd ed.Wiley-Blackwell, Cambridge, Mass.
Rödder, D., Lawing, A. M., Flecks, M., Ahmadzadeh, F., Dambach, J., Engler, J. O., Habel, J. C., Hartmann, T., Hörnes, D., Ihlow, F., Schidelko, K., Stiels, D., and Polly, P. D.. 2013. Evaluating the significance of paleophylogeographic species distribution models in reconstructing Quaternary range-shifts in Nearctic chelonians. PLoS ONE 8:e72855.
Rothschild, L., and Lister, A., eds. 2003. Evolution on Planet Earth: the impact of the physical environment. Academic Press, London.
Sageman, B. B., and Binna, C. R.. 1997. Diversity and species abundance patterns in Late Cenomanian black shale biofacies, Western Interior, US. Palaios 12:449466.
Saupe, E. E., Papes, M., Selden, P. A., and Vetter, R. S.. 2011. Tracking a medically important spider: climate change, ecological niche modeling, and the brown recluse (Loxosceles reclusa). PLoS ONE 6:e17731.
Saupe, E. E., Barve, V., Myers, C. E., Soberón, J., Hensz, C. M., Peterson, A. T., Owens, H. L., and Lira-Noriega, A.. 2012. Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecological Modelling 237–238:1122.
Saupe, E. E., Hendricks, J. R., Portell, R. W., Dowsett, H. J., Hunter, S. J., and Lieberman, B.S.. 2014. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proceedings of the Royal Society, Series B 281:20141995.
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.
Soberón, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10:11151123.
Soberón, J., and Peterson, A. T.. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2:110.
Stigall, A. L.. 2012a. Using ecological niche modeling to evaluate niche stability in deep time. Journal of Biogeography 39:772781.
Stigall, A. L. 2012b. Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction.” GSA Today 22:49.
Stigall, A. L. 2013. Analyzing links between biogeography, niche stability, and speciation: The impact of complex feedbacks on macroevolutionary patterns. In E. E. Saupe, C. E. Myers, and C. R. Congreve, eds. Macroevolution and the modern synthesis. Palaeontology Special Issue 56:12251238.
Stigall, A. L. 2014. When and how do species achieve niche stability over long time scales? Ecography 37:11231132. doi: 10.1111/ecog.00719.
Stigall, A. L., and Lieberman, B. S.. 2006. Quantitative Paleobiogeography: GIS, Phylogenetic biogeographic analysis, and conservation insights. Journal of Biogeography 33:20512060.
Stigall Rode, A. L., and Lieberman, B. S.. 2005a. Using environmental niche modeling to study the Late Devonian biodiversity crisis. Pp. 93180. in D. J. Over, J. R. Morrow, and P. B. Wignall, eds. Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach (Developments in Paleontology and Stratigraphy No. 20). Elsevier, Amsterdam.
Stigall Rode, A. L., and Lieberman, B. S.. 2005b. Paleobiogeographic patterns in the Middle and Late Devonian emphasizing Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 222:272284.
Stockwell, D., and Peters, D.. 1999. The GARP modeling system: problems and solutions to automated spatial prediction. International Journal of Geographic Information Science 13:143158.
Svenning, J.-C., and Skov, F.. 2004. Limited filling of the potential range in European tree species. Ecology Letters 7:565573.
Thuiller, W., Richardson, D. M., Pysek, P., Midgley, G. F., Hughes, G. O., and Rouget, M.. 2005aNiche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11:22342250.
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., and Prentice, I. C.. 2005b. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences USA 102:82458250.
Tingley, M. W., Monahan, W. B., Beissinger, S. R., and Moritz, C.. 2009. Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences USA 106:1963719643.
Tinoco, B. A., Astudillo, P. X., Latta, S. C., and Graham, C. H.. 2009. Distribution, ecology, and conservation of an endangered Andean hummingbird: the Violet-throated Metaltail (Metallura baroni). Bird Conservation International 19:6376.
Tittensor, D. P., Baco, A. R., Brewin, P. E., Clark, M. R., Consalvey, M., Hall-Spencer, J., Rowden, A. A., Schlacher, T., Stocks, K. I., and Rogers, A. D.. 2009. Predicting global habitat suitability for stony corals on seamounts. Journal of Biogeography 36:11111128.
Tyson, R. V. 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry 32:333339.
Varela, S., Lobo, J. M., Rodríguez, J., and Batra, P.. 2010. Were the Late Pleistocene climatic changes responsible for the disappearance of the European spotted hyena populations? Hindcasting a species geographic distribution across time. Quaternary Science Reviews 29:20272035.
Varela, S., Anderson, R. P., García-Valdés, R., and Fernández-González, F.. 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37:10841091. doi: 10.1111/j.1600-0587.2013.00441.x.
Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229236.
Walls, B. J., and Stigall, A. L.. 2011. Analyzing niche stability and biogeography of Late Ordovician brachiopod species using ecological niche modeling. Palaeogeography, Palaeoclimatology, Palaeoecology 99:1529.
Walls, B. J., and Stigall, A. L.. 2012. A field-based analysis of the accuracy of niche models applied to the fossil record. Paleontological Contributions 6, pp. 14.
Waltari, E., and Guralnick, R. P.. 2009. Ecological niche modeling of montane mammals in the Great Basin, North America: examining past and present connectivity of species across basins and ranges. Journal of Biogeography 36:148161.
Waltari, E., and Hickerson, M. J.. 2012. Late Pleistocene species distribution modeling of North Atlantic intertidal invertebrates. Journal of Biogeography 40:249260.
Waltari, E., Hijmans, R. J., Peterson, A. T., Nyári, Á. S., Perkins, S. L., and Guralnick, R. P.. 2007. Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2:e563.
Warren, D. L., Glor, R. E., and Turelli, M.. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:28682883.
Warren, D. L., Glor, R. E., and Turelli, M.. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607611.
Wiens, J. J., and Graham, C. H.. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36:519539.
Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Davies, T. J., Grytnes, J.-A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., and Stephens, P. R.. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13:13101324.
Zang, M.-G., Zhou, Z.-J., Chen, W.-Y., Slik, J. W. F., Cannon, C. H., and Raes, N.. 2012. Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biological Conservation 153:257264.
Zurell, D., Elith, J., and Schröder, B.. 2012. Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions. Diversity and Distributions 18:628634.

PaleoENM: applying ecological niche modeling to the fossil record

  • Corinne E. Myers (a1), Alycia L. Stigall (a2) and Bruce S. Lieberman (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed