Skip to main content Accessibility help
×
Home

A new method for quantifying heterochrony in evolutionary lineages

  • James C. Lamsdell (a1)

Abstract

The occupation of new environments by evolutionary lineages is frequently associated with morphological changes. This covariation of ecotype and phenotype is expected due to the process of natural selection, whereby environmental pressures lead to the proliferation of morphological variants that are a better fit for the prevailing abiotic conditions. One primary mechanism by which phenotypic variants are known to arise is through changes in the timing or duration of organismal development resulting in alterations to adult morphology, a process known as heterochrony. While numerous studies have demonstrated heterochronic trends in association with environmental gradients, few have done so within a phylogenetic context. Understanding species interrelationships is necessary to determine whether morphological change is due to heterochronic processes; however, research is hampered by the lack of a quantitative metric with which to assess the degree of heterochronic traits expressed within and among species. Here I present a new metric for quantifying heterochronic change, expressed as a heterochronic weighting, and apply it to xiphosuran chelicerates within a phylogenetic context to reveal concerted independent heterochronic trends. These trends correlate with shifts in environmental occupation from marine to nonmarine habitats, resulting in a macroevolutionary ratchet. Critically, the distribution of heterochronic weightings among species shows evidence of being influenced by both historical, phylogenetic processes and external ecological pressures. Heterochronic weighting proves to be an effective method to quantify heterochronic trends within a phylogenetic framework and is readily applicable to any group of organisms that have well-defined morphological characteristics, ontogenetic information, and resolved internal relationships.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A new method for quantifying heterochrony in evolutionary lineages
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A new method for quantifying heterochrony in evolutionary lineages
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A new method for quantifying heterochrony in evolutionary lineages
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Footnotes

Hide All

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.pzgmsbcgp

Footnotes

References

Hide All
Allmon, W. D. 1994. Patterns and processes of heterochrony in Lower Tertiary turritelline gastropods, U.S. Gulf and Atlantic Coastal plains. Journal of Paleontology 68:8095.
Anderson, B. M., and Allmon, W. D.. 2018. When domes are spandrels: on septation in turritellids (Cerithioidea) and other gastropods. Paleobiology 44:444459.
Anderson, L. I. 1997. The xiphosuran Liomesaspis from the Montceau-les-Mines Konservat-Lagerstätte, Massif Central, France. Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen 204:415436.
Bardin, J., Rouget, I., and Cecca, F.. 2017. Ontogenetic data analyzed as such in phylogenies. Systematic Biology 66:2337.
J, Benton M.. 2010. The origins of modern biodiversity on land. Philosophical Transactions of the Royal Society of London B 365:36673679.
Benton, M. J., and Hitchin, R.. 1997. Congruence between phylogenetic and stratigraphic data on the history of life. Proceedings of the Royal Society of London B 264:885890.
Benton, M. J., and Storrs, G. W.. 1994. Testing the quality of the fossil record: paleontological knowledge is improving. Geology 22:111114.
Bhullar, B.-A. S. 2012. A phylogenetic approach to ontogeny and heterochrony in the fossil record: cranial evolution and development in anguimorphan lizards (Reptilia: Squamata). Journal of Experimental Zoology B 318B:521530.
Bhullar, B.-A. S., Marugán-Lobón, J., Racimo, F., Bever, G. S., Rowe, T. B., Norrell, M. A., and Abzhanov, A.. 2012. Birds have paedomorphic dinosaur skulls. Nature 487:223226.
Błażejowski, B., Niedźwiedzki, G., Boukhalfa, K., and Soussi, M.. 2017. Limulitella tejraensis, a new species of limulid (Chelicerata, Xiphosura) from the Middle Triassic of southern Tunisia (Saharan Platform). Journal of Paleontology 91:960967.
Botton, M. L., Tankersley, R. A., and Loveland, R. E.. 2010. Developmental ecology of the American horseshoe crab Limulus polyphemus. Current Zoology 56:550562.
Bremer, K. 1994. Branch support and tree stability. Cladistics 10:295304.
Breton, G. 1997. Patterns and processes of heterochrony in Mesozoic goniasterid sea-stars. Lethaia 30:135144.
Carrano, M. T. 2000. Homoplasy and the evolution of dinosaur locomotion. Paleobiology 26:489512.
Carrano, M. T. 2006. Body-size evolution in the Dinosauria. Pp. 225268in Carrano, M. T., Gaudin, T. J., Blob, R. W., and Wible, J. R., eds. Amniote paleobiology. University of Chicago Press, Chicago.
Colangelo, P., Ventura, D., Piras, P., Bonaiuti, J. P. G., and Ardizzone, G.. 2019. Are developmental shifts the main driver of phenotypic evolution in Diplodus spp. (Perciformes: Sparidae)? BMC Evolutionary Biology 19:106.
Congreve, C. R., and Lamsdell, J. C.. 2016. Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Palaeontology 59:447462.
Congreve, C. R., Falk, A. R., and Lamsdell, J. C.. 2018. Biological hierarchies and the nature of extinction. Biological Reviews 93:811826.
Crônier, C., Renaud, S., Feist, R., and Auffray, J.-C.. 1998. Ontogeny of Trimerocephalus lelievrei (Trilobita, Phacopida), a representative of the Late Devonian phacopine paedomorphocline: a morphometric approach. Paleobiology 24:359370.
Darwin, C. R. 1859. On the origin of species by means of natural selection; or the preservation of favoured races in the struggle for life. Bantam Books, New York.
Davis, K. E., De Grave, S., Delmer, C., and Wills, M. A.. 2018. Freshwater transitions and symbioses shaped the evolution and extant diversity of caridean shrimps. Communications Biology 1:16.
Ehlinger, G. S., and Tankersley, R. A.. 2007. Reproductive ecology of the American horseshoe crab Limulus polyphemus in the Indian River Lagoon: an overview. Florida Scientist 70:449463.
Eldredge, N. I., and Salthe, S. N.. 1984. Hierarchy and evolution. Oxford Surveys in Evolutionary Biology 1:184208.
Erwin, D. H. 2015a. Novelty and innovation in the history of life. Current Biology 25:R930R940.
Erwin, D. H. 2015b. Was the Ediacaran–Cambrian radiation a unique evolutionary event? Paleobiology 41:115.
Erwin, D. H. 2017. The topology of evolutionary novelty and innovation in macroevolution. Philosophical Transactions of the Royal Society of London B 372:20160422.
Erwin, D. H., and Valentine, J. W.. 2013. The Cambrian explosion: the construction of animal biodiversity. Roberts and Company, Greenwood, Colo.
Farley, R. D. 2010. Book gill development in embryos and first and second instars of the horseshoe crab Limulus polyphemus L. (Chelicerata, Xiphosura). Arthropod Structure & Development 39:369381.
Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., and Kluge, A. G.. 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistics 12:99124.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783791.
Fernandez-Lopez, S. R., and Pavia, G.. 2015. Mollistephaninae and Frebolditinae, new subfamilies of Middle Jurassic stephanoceratid Ammonoidea. Paläontologische Zeitschrift 89:707727.
Gauthier, J., Kluge, A. G., and Rowe, T.. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4:105209.
Gerber, S. 2011. Comparing the differential filling of morphospace and allometric space through time: the morphological and developmental dynamics of Early Jurassic ammonoids. Paleobiology 37:369382.
Goloboff, P. A., Farris, J. A., and Nixon, K. C.. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24:774786.
Gould, S. J. 1982. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. Pp. 83104in Milkman, R., ed. Perspectives on evolution. Sinauer, Sunderland, Mass.
Gould, S. J. 1988. The uses of heterochrony. Pp. 113in McKinney, M. L, ed. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.
Gould, S. J., and Lewontin, R. C.. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London B 205:581598.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4(1).
Harzsch, S., Vilpoux, K., Blackburn, D. C., Platchetzki, D., Brown, N. L., Melzer, R., Kempler, K. E., and Battelle, B. A.. 2006. Evolution of arthropod visual systems: development of the eyes and central visual pathways in the horseshoe crab Limulus polyphemus Linnaeus, 1758 (Chelicerata, Xiphosura). Developmental Dynamics 235:26412655.
Haug, C., and Rötzer, M. A. I. N.. 2018a. The ontogeny of Limulus polyphemus (Xiphosura s. str., Euchelicerata) revised: looking “under the skin.” Development Genes and Evolution 228:4961.
Haug, C., and Rötzer, M. A. I. N.. 2018b. The ontogeny of the 300 million year old xiphosuran Euproops danae (Euchelicerata) and implications for resolving the Euproops species complex. Development Genes and Evolution 228:6374.
Haug, C., Van Roy, P., Leipner, A., Funch, P., Rudkin, D. M., Schöllmann, L., and Haug, J. T.. 2012. A holomorph approach to xiphosuran evolution—a case study on the ontogeny of Euproops. Development Genes and Evolution 222:253268.
Holder, M. T., Sukumaran, J., and Lewis, P. O.. 2008. A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. Systematic Biology 57:814821.
Hopkins, M. J. 2014. The environmental structure of trilobite morphological disparity. Paleobiology 40:352373.
Hopkins, M. J., and Gerber, S.. 2017. Morphological disparity. Pp. 111in de la Rosa, L. Nuño and Müller, G. B., eds. Evolutionary developmental biology. Springer, Cham, Switzerland.
Hopkins, M. J., and Lidgard, S.. 2012. Evolutionary mode routinely varies among morphological traits within fossil species lineages. Proceedings of the National Academy of Sciences USA 109:2052020525.
Hu, S., Zhang, Q., Feldmann, R. M., Benton, M. J., Schweitzer, C. E., Wen, W., Zhou, C., Xie, T., , T., and Hong, S.. 2017. Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China. Scientific Reports 7:14112.
Huelsenbeck, J. P., and Ronquist, F.. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754755.
Hunt, G., Hopkins, M. J., and Lidgard, S.. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences USA 112:48854890.
Huttenlocker, A. K. 2014. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida) during the end-Permian mass extinction. PLoS ONE 9:e87553.
Jones, D. S. 1988. Sclerochronology and the size versus age problem. Pp. 93108in McKinney, M. L., ed. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.
Kiessling, W., and Aberhan, M.. 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic–Jurassic time. Paleobiology 33:414434.
Korn, D. 1995. Paedomorphosis of ammonoids as a result of sealevel fluctuations in the Late Devonian Wocklumeria Stufe. Lethaia 28:155165.
Korn, D., Hopkins, M. J., and Walton, S. A.. 2013. Extinction space—a method for the quantification and classification of changes in morphospace across extinction boundaries. Evolution 67:27952810.
Lamsdell, J. C. 2013. Revised systematics of Palaeozoic “horseshoe crabs” and the myth of monophyletic Xiphosura. Zoological Journal of the Linnean Society 167:127.
Lamsdell, J. C. 2016. Horseshoe crab phylogeny and independent colonisations of freshwater: ecological invasion as a driver for morphological innovation. Palaeontology 59:181194.
Lamsdell, J. C. 2019. A chasmataspidid affinity for the putative xiphosuran Kiaeria Størmer, 1934. Paläontologische Zeitschrift. doi: 10.1007/s12542-019-00493-8.
Lamsdell, J. C. In press. Evolutionary history of the dynamic horseshoe crab. International Wader Studies 21.
Lamsdell, J. C., and McKenzie, S. C.. 2015. Tachypleus syriacus (Woodward)—a sexually dimorphic Cretaceous crown limulid reveals underestimated horseshoe crab divergence times. Organisms Diversity & Evolution 15:681693.
Lamsdell, J. C., Briggs, D. E. G., Liu, H. P., Witzke, B. J., and McKay, R. M.. 2015. A new Ordovician arthropod from the Winneshiek Lagerstätte of Iowa (USA) reveals the ground plan of eurypterids and chasmataspidids. Science of Nature 102:63.
Lamsdell, J. C., Congreve, C. R., Hopkins, M. J., Krug, A. Z., and Patzkowsky, M. E.. 2017. Phylogenetic paleoecology: tree-thinking and ecology in deep time. Trends in Ecology and Evolution 32:452463.
Lamsdell, J. C., Tashman, J. N., Pasini, G., and Garassino, A.. 2020. A new limulid (Chelicerata, Xiphosurida) from the Late Cretaceous (Cenomanian–Turonian) of Gara Sbaa, southeast Morocco. Cretaceous Research 106:104230.
Lerner, A. J., Lucas, S. G., and Mansky, C. F.. 2016. The earliest paleolimulid and its attributed ichnofossils from the Lower Mississippian (Tournasian) Horton Bluff Formation of Blue Beach, Nova Scotia, Canada. Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen 280:193214.
Lerner, A. J., Lucas, S. G., and Lockley, M.. 2017. First fossil horseshoe crab (Xiphosurida) from the Triassic of North America. Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen 286:289302.
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50:913925.
Losos, J. B. 2010. Adaptive radiation, ecological opportunity, and evolutionary determinism. American Naturalist 175:623639.
Maddison, W. P., and Maddison, D. R.. 2018. Mesquite: a modular system for evolutionary analysis, version 3.51. http://www.mesquiteproject.org, accessed 10 August 2019.
Martynov, A., Lundin, K., Picton, B., Fletcher, K., Malmberg, K., and Korshunova, T.. 2020. Multiple paedomorphic lineages of soft-substrate burrowing invertebrates: parallels in the origin of Xenocratena and Xenoturbella. PLoS ONE 15:e0227173.
McKinney, M. L. 1986. Ecological causation of heterochrony: a test and implications for evolutionary theory. Paleobiology 12:282289.
McKinney, M. L. 1988. Classifying heterochrony. Allometry, size and time. Pp. 1734in McKinney, M. L., ed. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.
McKinney, M. L. 1999. Heterochrony: beyond words. Paleobiology 25:149153.
McNamara, K. J. 1982. Heterochrony and phylogenetic trends. Paleobiology 8:130142.
McNamara, K. J. 1986. The role of heterochrony in the evolution of Cambrian trilobites. Biological Reviews 61:121156.
McNamara, K. J. 1988. Patterns of heterochrony in the fossil record. Trends in Ecology and Evolution 3:176180.
McNamara, K. J. 2012. Heterochrony: the evolution of development. Evolution: Education and Outreach 5:203218.
McNamara, K. J., and McKinney, M. L.. 2005. Heterochrony, disparity, and macroevolution. Paleobiology 31:1726.
Miller, A. I., and Connolly, S. R.. 2001. Substrate affinities of higher taxa and the Ordovician radiation. Paleobiology 27:768778.
Naugolnykh, S. V. 2017. Lower Kungurian shallow-water lagoon biota of Middle Cis-Urals, Russia: towards paleoecological reconstruction. Global Geology 20:113.
Norell, M. A. 1993. Tree-based approaches to understanding history: comments on ranks, rules, and the quality of the fossil record. American Journal of Science 293A:407417.
Norell, M. A., and Novacek, M. J.. 1992a. Congruence between superpositional and phylogenetic patterns: comparing cladistic patterns with fossil records. Cladistics 8:319337.
Norell, M. A., and Novacek, M. J.. 1992b. The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Science 255:16901693.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Michin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H.. 2019. Package ‘vegan’. https://cran.r-project.org/web/packages/vegan/index.html, accessed 12 February 2020.
O'Leary, M. A., and Kaufman, S. G.. 2012. MorphoBank 3.0: web application for morphological phylogenetics and taxonomy. http://www.morphobank.org, accessed 2 June 2019.
O'Reilly, J. E., Puttick, M. N., Parry, L., Tanner, A. R., Tarver, J. E., Fleming, J., Pisani, D., and Donoghue, P. C. J.. 2016. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biology Letters 12:20160081.
Poty, E. 2010. Morphological limits to diversification of the rugose and tabulate corals. Palaeoworld 19:389400.
Poulin, R. 2005. Evolutionary trends in body size of parasitic flatworms. Biological Journal of the Linnean Society 85:181189.
Prado, J. L., and Alberdi, M. T.. 2008. Cladistic analysis among trilophodont gompotheres (Mammalia, Proboscidea) with special attention to the South American genera. Palaeontology 51:903915.
Puttick, M. N., O'Reilly, J. E., Tanner, A. R., Fleming, J. F., Clark, J., Holloway, L., Lozano-Fernandez, J., Parry, L. A., Tarver, J. E., Pisani, D., and Donoghue, P. C. J.. 2017. Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data. Proceedings of the Royal Society of London B 284:20162290.
Puttick, M. N., O'Reilly, J. E., Pisani, D., and Donoghue, P. C. J.. 2019. Probabilistic methods outperform parsimony in the phylogenetic analysis of data simulated without a probabilistic method. Palaeontology 62:117.
Racheboeuf, P. R., Vannier, J., and Anderson, L. I.. 2002. A new three-dimensionally preserved xiphosuran chelicerate from the Montceau-les-Mines Lagerstätte (Carboniferous, France). Palaeontology 45:125147.
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org.
Sansom, R. S., Choate, P. G., Keating, J. N., and Randle, E.. 2018. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biology Letters 14:20180263.
Saupe, E. E., Hendricks, J. R., Portell, R. W., Dowsett, H. J., Haywood, A., Hunter, S. J., and Lieberman, B. S.. 2014. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proceedings of the Royal Society of London B 281:20141995.
Saupe, E. E., Qiao, H., Hendricks, J. R., Portell, R. W., Hunter, S. J., Soberón, J., and Lieberman, B. S.. 2015. Niche breadth and geographic range size as determinants of species survival on geological time scales. Global Ecology and Biogeography 24:11591169.
Scholl, G. 1977. Beiträge zur Embryonalentwicklung von Limulus polyphemus L. (Chelicerata, Xiphosura). Zoomorphologie 86:99154.
Schultka, S. 2000. Zur palökologie der Euproopiden im Nordwestdeutschen Oberkarbon. Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe 3:8798.
Sekiguchi, K. 1988. Embryonic development. Pp. 145181in Sekiguchi, K., ed. Biology of horseshoe crabs. Science House, Tokyo.
Sekiguchi, K., Yamamichi, Y., and Costlow, J. D.. 1982. Horseshoe crab developmental studies I. Normal embryonic development of Limulus polyphemus compared with Tachypleus tridentatus. Pp. 5373in Bonaventura, J., Bonaventura, C., and Tesh, S., eds. Physiology and biology of horseshoe crabs: studies on normal and environmentally stressed animals. Liss, New York.
Sekiguchi, K., Seshimo, H., and Sugita, H.. 1988a. Post-embryonic development. Pp. 181195in Sekiguchi, K., ed. Biology of horseshoe crabs. Science House, Tokyo.
Sekiguchi, K., Seshimo, H., and Sugita, H.. 1988b. Post-embryonic development of the horseshoe crab. Biological Bulletin 174:337345.
Selden, P. A., and Siveter, D. J.. 1987. The origin of the limuloids. Lethaia 20:383392.
Selden, P. A., Lamsdell, J. C., and Liu, Q.. 2015. An unusual xiphosuran linking horseshoe crabs and eurypterids, from the Lower Devonian (Lochkovian) of Yunnan, China. Zoologica Scripta 44:645652.
Shpinev, E. S., and Vasilenko, D. V.. 2018. First fossil xiphosuran (Chelicerata, Xiphosura) egg clutch from the Carboniferous of Khakassia. Paleontological Journal 52:400404.
Shuster, C. N. Jr. 1982. A pictorial review of the natural history and ecology of the horseshoe crab, Limulus polyphemus, with reference to other Limulidae. Pp. 152in Bonaventura, J., Bonaventura, C., and Tesh, S., eds. Physiology and biology of horseshoe crabs: studies on normal and environmentally stressed animals. Liss, New York.
Shuster, C. N. Jr., and Sekiguchi, K.. 2003. Growing up takes about ten years and eighteen stages. Pp. 103132in Shuster, C. N. Jr., Barlow, R. B., and Brockmann, H. J., eds. The American horseshoe crab. Harvard University Press, Cambridge, Mass.
Simms, M. J. 1988. Patterns of evolution among Lower Jurassic crinoids. Historical Biology 1:1744.
Simpson, C., and Harnik, P. G.. 2009. Assessing the role of abundance in marine bivalve extinction over the post-Paleozoic. Paleobiology 35:631647.
Spearman, C. 1904. A proof and measurement of association between two things. American Journal of Psychology 15:72101.
Stroud, J. T., and Losos, J. B.. 2016. Ecological opportunity and adaptive radiation. Annual Review of Ecology, Evolution, and Systematics 47:507532.
Tasch, P. 1961. Paleolimnology: Part 2—Harvey and Sedgwick counties, Kansas: stratigraphy and biota. Journal of Paleontology 35:836865.
Tashman, J. N., Feldmann, R. M., and Schweitzer, C. E.. 2019. Morphological variation in the Pennsylvanian horseshoe crab Euproops danae (Meek & Worthen, 1865) (Xiphosurida, Euproopidae) from the lower Mercer Shale, Windber, Pennsylvania, USA. Journal of Crustacean Biology 39:396406.
Toljagić, O., and Butler, R. J.. 2013. Triassic–Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs. Biology Letters 9:20130095.
Tucker, C. M., Cadotte, M. W., Carvalho, S. B., Davies, J. T., Ferrier, S., Fritz, S. A., Grenyer, R., Helmus, M. R., Jin, L. S., Mooers, A. Ø., Pavoine, S., Purschke, O., Redding, D. W., Rosauer, D. F., Winter, M., and Mazel, F.. 2017. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews 92:698715
Van Valkenburgh, B. 1991. Iterative evolution of hypercarnivory in canids (Mammalia, Carnivora)—evolutionary interactions among sympatric predators. Paleobiology 17:340362.
Van Valkenburgh, B. 1999. Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Sciences 27:463493.
Van Valkenburgh, B., Wang, X., and Damuth, J.. 2004. Cope's rule, hypercarnivory, and extinction in North American canids. Science 306:101104.
Vrba, E. S., and Eldredge, N.. 1984. Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology 10:146171.
Wagner, P. J., and Sidor, C. A.. 2000. Age rank/clade rank metrics–sampling, taxonomy, and the meaning of “stratigraphic consistency.” Systematic Biology 49:463479.
Watson, D. M. S. 1909. Limulus woodwardi, sp. nov., from the Lower Oolite of England. Geological Magazine 6:1416.
Wright, A. M., and Hillis, D. M.. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9:e109210.
Yoder, J. B., Clancey, E., Roches, S. Des, Eastman, J. M., Gentry, L., Godsoe, W., Hagey, T. J., Jochimsen, D., Oswald, B. P., Robertson, J., Sarver, B. A. J., Schenks, J. J., Spear, S. F., and Harmon, L. J.. 2010. Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology 23:15811596.

A new method for quantifying heterochrony in evolutionary lineages

  • James C. Lamsdell (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.