Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T09:33:24.066Z Has data issue: false hasContentIssue false

Morphological diversification of Paleozoic crinoids

Published online by Cambridge University Press:  08 February 2016

Mike Foote*
Affiliation:
Museum of Paleontology and Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109

Abstract

Several metrics, including average difference among species, range of occupied morphological space, and number of character-state combinations, are used to investigate morphological diversification in Paleozoic crinoids. Despite several phases of taxonomic diversification, the maximal level of disparity reached in the Ordovician remained essentially unsurpassed. Although new regions in morphological space were occupied after the Devonian, these were not as extensive as those that had been evacuated prior to the Carboniferous. This discordance between extensive total morphological change and limited net change further supports previous arguments for the importance of morphological constraints in crinoid evolution. Major changes in the occupation of morphological space correspond with changes in taxonomic diversity within certain higher taxa. The extent to which advanced cladids (Poteriocrinina) appear to expand into new morphological space is exaggerated by the large number of very similar species in this group. If fewer species are sampled, by considering only those forms that differ from each other by at least some prescribed amount, poteriocrines appear to be less extreme morphologically. In contrast, other groups that seem to occupy unique regions in morphological space continue to do so even if fewer of them are sampled. Major crinoid clades—Camerata and Cladida+Flexibilia—do not show the same evolutionary pattern as Crinoidea, but instead exhibit a more gradual diversification of morphology. This observation provides additional support for the existence of qualitative differences among taxa of different rank.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerly, S. C. 1989. Kinematic analysis of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology 15:147164.CrossRefGoogle Scholar
Anstey, R. L., and Pachut, J. F. 1992. Cladogenesis and speciation in early bryozoans. Geological Society of America Abstracts with Programs 24:A139.Google Scholar
Ausich, W. I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology 54:273288.Google Scholar
Ausich, W. I. 1985. New crinoids and revision of the superfamily Glyptocrinacea (Early Silurian, Ohio). Journal of Paleontology 59:793808.Google Scholar
Ausich, W. I. 1986a. Early Silurian rhodocrinitacean crinoids (Brassfield Formation, Ohio). Journal of Paleontology 60:84115.CrossRefGoogle Scholar
Ausich, W. I. 1986b. New camerate crinoids of the suborder Glyptocrinina from the Lower Silurian Brassfield Formation (southwestern Ohio). Journal of Paleontology 60:887897.CrossRefGoogle Scholar
Ausich, W. I. 1987. Brassfield Compsocrinina (Lower Silurian crinoids) from Ohio. Journal of Paleontology 61:552562.CrossRefGoogle Scholar
Ausich, W. I. 1988. Evolutionary convergence and parallelism in crinoid calyx design. Journal of Paleontology 62:906916.CrossRefGoogle Scholar
Ausich, W. I., and Kammer, T. W. 1990. Systematics and phylogeny of the late Osagean and Meramecian crinoids Platycrimtes and Eucladocrinus from the Mississippian stratotype region. Journal of Paleontology 64:759778.CrossRefGoogle Scholar
Ausich, W. I., and Kammer, T. W. 1992. Dizygocrinus: Mississippian camerate crinoid (Echinodermata) from the midcontinental United States. Journal of Paleontology 66:637658.CrossRefGoogle Scholar
Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304321.CrossRefGoogle Scholar
Baumiller, T. K.In press. Patterns of dominance and extinction in the record of Paleozoic crinoids. In David, B., ed. Echinoderm biology: Proceedings of the Eighth International Conference, Dijon, 5-10 September, 1993. Balkema, Rotterdam.Google Scholar
Briggs, D. E. G., and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science 246:241243.CrossRefGoogle ScholarPubMed
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science 256:16701673.CrossRefGoogle ScholarPubMed
Broadhead, T. W. 1981. Carboniferous camerate crinoid subfamily Dichocrininae. Palaeontographica A 176:81157.Google Scholar
Broadhead, T. W. 1985. Evolution of Carboniferous Hexacrinitacea (Crinoidea, Camerata). Proceedings, Ninth International Congress on Carboniferous Stratigraphy and Geology 5:205215.Google Scholar
Broadhead, T. W. 1988a. The evolution of feeding structures in Palaeozoic crinoids. Pp. 257268in Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar
Broadhead, T. W. 1988b. Heterochrony—a pervasive influence in the evolution of Paleozoic Crinoidea. Pp. 115128in Burke, R. D., Mladenov, R. V., Lambert, P., and Parsley, R. L., eds. Echinoderm biology. Balkema, Rotterdam.Google Scholar
Brower, J. C. 1973. Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana 7:259499.Google Scholar
Brower, J. C. 1982. Phylogeny of primitive calceocrinids. Pp. 90110in Sprinkle, J., ed. Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Brower, J. C. 1988. Ontogeny and phylogeny in primitive calceocrinid crinoids. Journal of Paleontology 62:917934.CrossRefGoogle Scholar
Brower, J. C. 1990. Ontogeny and phylogeny of the dorsal cup in calceocrinid crinoids. Journal of Paleontology 64:300318.CrossRefGoogle Scholar
Campbell, K. S. W., and Marshall, C. R. 1987. Rates of evolution among Palaeozoic echinoderms. Pp. 61100in Campbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar
Carlson, S. J. 1992. Evolutionary trends in the articulate brachiopod hinge mechanism. Paleobiology 18:344366.CrossRefGoogle Scholar
Cherry, L. M., Case, S. M., Kunkel, J. G., Wyles, J. S., and Wilson, A. C. 1982. Body shape metrics and organismal evolution. Evolution 36:914933.CrossRefGoogle ScholarPubMed
Cisne, J. L. 1974. Evolution of the world fauna of aquatic free-living arthropods. Evolution 28:337366.CrossRefGoogle ScholarPubMed
Culver, S. J., Buzas, M. A., and Collins, L. S. 1987. On the value of taxonomic standardization in evolutionary studies. Paleobiology 13:169176.CrossRefGoogle Scholar
Derstler, K. L. 1981. Morphological diversity of early Cambrian echinoderms. Pp. 7175in Taylor, M. E., ed. Short papers for the second International Symposium on the Cambrian System. U. S. Geological Survey Open File Report 81-743.Google Scholar
Derstler, K. L. 1982. Estimating the rate of morphological change in fossil groups. Proceedings, Third North American Paleontological Convention 1:131136.Google Scholar
Donovan, S. K. 1986. Pelmatozoan columnals from the Ordovician of the British Isles, part 1. Palaeontographical Society Monograph 138(568):168.CrossRefGoogle Scholar
Donovan, S. K. 1989a. Pelmatozoan columnals from the Ordovician of the British Isles, part 2. Palaeontographical Society Monograph 142(580):69120.CrossRefGoogle Scholar
Donovan, S. K. 1989b. The significance of the British Ordovician crinoid fauna. Modern Geology 13:243255.Google Scholar
Efron, B. 1982. The jackknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia.CrossRefGoogle Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.CrossRefGoogle Scholar
Fisher, D. C. 1986. Progress in organismal design. Pp. 99117in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Fisher, D. C. 1991. Phylogenetic analysis and its application in evolutionary paleobiology. Pp. 103122in Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4. The Paleontological Society, Knoxville, Tenn.Google Scholar
Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology 39:371382.CrossRefGoogle Scholar
Foote, M. 1991a. Morphologic patterns of diversification: examples from trilobites. Palaeontology 34:461485.Google Scholar
Foote, M. 1991b. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, University of Michigan 28:101140.Google Scholar
Foote, M. 1992a. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.CrossRefGoogle Scholar
Foote, M. 1992b. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings, National Academy of Sciences, USA 89:73257329.CrossRefGoogle ScholarPubMed
Foote, M. 1993a. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.CrossRefGoogle Scholar
Foote, M. 1993b. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.CrossRefGoogle Scholar
Foote, M. 1994a. Morphology of Ordovician-Devonian crinoids. Contributions from the Museum of Paleontology, University of Michigan 29:139.Google Scholar
Foote, M. 1994b. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.CrossRefGoogle Scholar
Foote, M.In press. Morphology of Carboniferous and Permian crinoids. Contributions from the Museum of Paleontology, University of Michigan 29.Google Scholar
Foote, M., and Gould, S. J. 1992. Cambrian and Recent morphological disparity. Science 258:1816.CrossRefGoogle ScholarPubMed
Fortey, R. A., and Owens, R. M. 1990a. Trilobites. Pp. 121142in McNamara, 1990.Google Scholar
Fortey, R. A., and Owens, R. M. 1990b. Evolutionary radiations in the Trilobita. Pp. 139164in Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Clarendon Press, Oxford.Google Scholar
Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology 62:319329.CrossRefGoogle Scholar
Gould, S. J. 1989. Wonderful life: the Burgess Shale and the nature of history. Norton, New York.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.CrossRefGoogle Scholar
Gould, S. J. 1993. How to analyze Burgess Shale disparity—a reply to Ridley. Paleobiology 19:522523.CrossRefGoogle Scholar
Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325338.CrossRefGoogle Scholar
Guensburg, T. E., and Sprinkle, J. 1990. Early Ordovician crinoid-dominated echinoderm fauna from the Fillmore Formation of western Utah. Geological Society of America Abstracts with Programs 22:A220.Google Scholar
Gumbel, E. J. 1958. Statistics of extremes. Columbia University Press, New York.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, New York.Google Scholar
Hickman, C. S. 1993a. Biological diversity: elements of a paleontological agenda. Palaios 8:309310.CrossRefGoogle Scholar
Hickman, C. S. 1993b. Theoretical design space: a new program for the analysis of structural diversity. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 190:169182.Google Scholar
Holman, E. 1989. Some evolutionary correlates of higher taxa. Paleobiology 15:357363.CrossRefGoogle Scholar
Jacobs, D. K. 1990. Selector genes and the Cambrian radiation of the Bilateria. Proceedings, National Academy of Sciences, USA 87:44064410.CrossRefGoogle ScholarPubMed
Kammer, T. W., and Ausich, W. I. 1992. Advanced cladid crinoids from the middle Mississippian of the east-central United States: primitive-grade calyces. Journal of Paleontology 66:461480.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1993. Advanced cladid crinoids from the middle Mississippian of the east-central United States: intermediate-grade calyces. Journal of Paleontology 67:614639.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1994. Advanced cladid crinoids from the middle Mississippian of the east-central United States: advanced-grade calyces. Journal of Paleontology 68:339351.CrossRefGoogle Scholar
Kelly, S. M. 1982. Origin of the crinoid orders Disparida and Cladida: Possible inadunate cup plate homologies. Proceedings, Third North American Paleontological Convention, 1:285290.Google Scholar
Kendrick, D. C. 1992. Crinoid arm branching topology, pinnulation, and the convergence of crinoid arm designs. Geological Society of America Abstracts with Programs 24:A225.Google Scholar
Kendrick, D. C. 1993. Computer modelling of crinoid calyx morphologies and comparisons with real forms. Geological Society of America Abstracts with Programs 25:A103.Google Scholar
Kesling, R. V., and Sigler, J. P. 1969. Cunctocrinus, a new Middle Devonian calceocrinid crinoid from the Silica Shale of Ohio. Contributions from the Museum of Paleontology, University of Michigan 22:339360.Google Scholar
Kirk, E. 1937. Eupachycrinus and related Carboniferous crinoid genera. Journal of Paleontology 11:598607.Google Scholar
Knapp, W. D. 1969. Declinida, a new order of late Paleozoic inadunate crinoids. Journal of Paleontology 43:340391.Google Scholar
Labandeira, C. C., and Sepkoski, J. J. Jr. 1993. Insect diversity in the fossil record. Science 261:310315.CrossRefGoogle ScholarPubMed
Lane, N. G. 1963. Meristic variation in the dorsal cup of monobathrid camerate crinoids. Journal of Paleontology 37:917930.Google Scholar
Lane, N. G. 1967. Revision of suborder Cyathocrinina (class Crinoidea). University of Kansas Paleontological Contributions, Paper 24:113.Google Scholar
Lane, N. G. 1971. Crinoids and reefs. Proceedings, North American Paleontological Convention 2:14301443.Google Scholar
Lane, N. G., and Strimple, H. L. 1978. Evolution of inadunate crinoids. Pp. T292T301in Moore, and Teichert, , eds.Google Scholar
Lee, M. S. Y. 1992. Cambrian and Recent morphological disparity. Science 258:18161817.CrossRefGoogle ScholarPubMed
Macurda, D. B. Jr. 1974. A quantitative phyletic study of the camerate crinoid families Actinocrinitidae and Periechocrinitidae and its taxonomic implications. Journal of Paleontology 48:820832.Google Scholar
McGhee, G. R. 1980. Shell form in the biconvex articulate Brachiopoda: a geometric analysis. Paleobiology 6:5776.CrossRefGoogle Scholar
McGhee, G. R. 1991. Theoretical morphology: the concept and its applications. Pp. 87102in Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4. The Paleontological Society, Knoxville, Tenn.Google Scholar
McKinney, M. L. 1990. Classifying and analysing evolutionary trends. Pp. 2858in McNamara, 1990.Google Scholar
McNamara, K. J., ed. 1990. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
McShea, D. W. 1992. A metric for the study of evolutionary trends in the complexity of serial structures. Biological Journal of the Linnaean Society 45:3955.CrossRefGoogle Scholar
McShea, D. W. 1993a. Evolutionary change in the morphological complexity of the mammalian vertebral column. Evolution 47:730740.CrossRefGoogle ScholarPubMed
McShea, D. W. 1993b. Arguments, tests, and the Burgess Shale—a commentary on the debate. Paleobiology 19:399402.CrossRefGoogle Scholar
Moore, R. C. 1952. Evolutionary rates among crinoids. Journal of Paleontology 26:338352.Google Scholar
Moore, R. C. 1962a. Revision of Calceocrinidae. University of Kansas Paleontological Contributions, Echinodermata, Article 4:140.Google Scholar
Moore, R. C. 1962b. Ray structures of some inadunate crinoids. University of Kansas Paleontological Contributions, Echinodermata, Article 5:147.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper 46:1153.CrossRefGoogle Scholar
Moore, R. C., and Plummer, F. B. 1938. Upper Carboniferous crinoids from the Morrow subseries of Arkansas, Oklahoma, and Texas. Denison University Scientific Laboratories Journal 32:209313.Google Scholar
Moore, R. C., and Plummer, F. B. 1940. Crinoids from the Upper Carboniferous and Permian strata in Texas. University of Texas Publication 3945:1459.Google Scholar
Moore, R. C., and Strimple, H. L. 1969. Explosive evolutionary differentiation of unique group of Mississippian-Pennsylvanian camerate crinoids (Acrocrinidae). University of Kansas Paleontological Contributions, Paper 39:144.Google Scholar
Moore, R. C., and Strimple, H. L. 1973. Lower Pennsylvanian (Morrowan) crinoids from Arkansas, Oklahoma, and Texas. University of Kansas Paleontological Contributions, Article 60:184.Google Scholar
Moore, R. C., and Teichert, C., eds. 1978. Treatise on invertebrate paleontology, Part T, Echinodermata 2. The Geological Society of America and The University of Kansas, Boulder, Col. and Lawrence, Kans.Google Scholar
Moore, R. C., Rasmussen, H. W., Lane, N. G., Ubaghs, G., Strimple, H. L., Peck, R. E., Sprinkle, J., Fay, R. O., and Sieverts-Doreck, H. 1978. Systematic descriptions. Pp. T405T937in Moore, and Teichert, , eds.Google Scholar
Okamoto, T. 1988. Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:3552.Google Scholar
Pearson, E. S. 1926. Further note on the distribution of range in samples taken from a normal population. Biometrika 18:173194.CrossRefGoogle Scholar
Perl, P. 1979. Miniatures and bonsai. Time-Life Books, Alexandria, Virginia.Google Scholar
Pielou, E. C. 1977. Mathematical ecology. Wiley, New York.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305322.CrossRefGoogle Scholar
Ridley, M. 1993. Analysis of the Burgess Shale. Paleobiology 19:519521.CrossRefGoogle Scholar
Roy, K. 1994. Effects of the Mesozoic Marine Revolution on the taxonomic, morphologic, and biogeographic evolution of a group: aporrhaid gastropods during the Mesozoic. Paleobiology 20:274296.CrossRefGoogle Scholar
Runnegar, B. 1987. Rates and modes of evolution in the Mollusca. Pp. 3960in Campbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar
Saunders, W. B., and Swan, A. R. H. 1984. Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195228.CrossRefGoogle Scholar
Schram, F. R. 1981. On the classification of Eumalacostraca. Journal of Crustacean Biology 1:110.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., and Raup, D. M. 1986. Periodicity in marine extinction events. Pp. 336in Elliott, D. K., ed. Dynamics of extinction. John Wiley and Sons, New York.Google Scholar
Simms, M. J. 1990. Crinoids. Pp. 188204in McNamara, 1990.Google Scholar
Simms, M. J. 1993. Reinterpretation of thecal plate homology and phylogeny in the Class Crinoidea. Lethaia 26:303312.CrossRefGoogle Scholar
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Palaeontology 36:91109.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific Publications, Oxford.CrossRefGoogle Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy. Freeman, San Francisco.Google Scholar
Springer, F. 1920. The Crinoidea Flexibilia. Smithsonian Institution Publication 2501:1486.Google Scholar
Springer, F. 1924. A remarkable fossil echinoderm fauna in the East Indies. American Journal of Science, series 5, 8:325335.CrossRefGoogle Scholar
Springer, F. 1926. Unusual forms of fossil crinoids. Proceedings, U.S. National Museum 67(5):1137.CrossRefGoogle Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Special Publication, Museum of Comparative Zoology, Harvard University, Cambridge, Mass.CrossRefGoogle Scholar
Sprinkle, J. 1980. An overview of the fossil record. Pp. 1526in Broadhead, T. W. and Waters, J. A., eds. Echinoderms: notes for a short course. University of Tennessee, Knoxville.Google Scholar
Sprinkle, J. 1983. Patterns and problems in echinoderm evolution. Echinoderm Studies 1:118.Google Scholar
Sprinkle, J. 1990. New echinoderm fauna from the Ninemile Shale (Lower Ordovician) of central and southern Nevada. Geological Society of America Abstracts with Programs 22:A219.Google Scholar
Sprinkle, J. 1992. Radiation of Echinodermata. Pp. 375398in Lipps, J. H. and Signor, P. W., eds. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Sprinkle, J., and Guensburg, T. E. 1991. Origin of echinoderms in the Paleozoic evolutionary fauna: new data from the Early Ordovician of Utah and Nevada. Geological Society of America Abstracts with Programs 23:A278.Google Scholar
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Stebbins, G. L. Jr. 1951. Natural selection and the differentiation of angiosperm families. Evolution 5:299324.CrossRefGoogle Scholar
Stevens, S. S. 1968. Measurement, statistics, and the schemapiric view. Science 161:849856.CrossRefGoogle ScholarPubMed
Sutton, A. H., and Winkler, V. D. 1940. Mississippian Inadunata—Eupachycrinus and related forms. Journal of Paleontology 14:544567.Google Scholar
Thomas, R. D. K., and Reif, W.-E. 1991. Design elements employed in the construction of animal skeletons. Pp. 283294in Schmidt-Kittler, N. and Vogel, K., eds. Constructional morphology and evolution. Springer, Berlin.CrossRefGoogle Scholar
Thomas, R. D. K., and Reif, W.-E. 1993. The skeleton space: a finite set of organic designs. Evolution 47:341360.CrossRefGoogle ScholarPubMed
Ubaghs, G. 1956a. Recherches sur les crinoïdes Camerata du Silurien de Gotland (Suède). I. Morphologie et Paléobiologie de Barrandeocrinus sceptrum Angelin. Arkiv för Zoologi, ser. 2, 9:515550.Google Scholar
Ubaghs, G. 1956b. Recherches sur les crinoïdes Camerata du Silurien de Gotland (Suède). II. Morphologie et position systématique de Polypeltes granulatus Angelin. Arkiv för Zoologi, ser. 2, 9:551572.Google Scholar
Ubaghs, G. 1958. Recherches sur les crinoïdes Camerata du Silurien de Gotland (Suède). III. Melocrinicae, avec des remarques sur l'évolution des Melocrinidae. Arkiv för Zoologi, ser. 2, 11:259306.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories, Paleobiology 6:444450.CrossRefGoogle Scholar
Valentine, J. W. 1986. Fossil record of the origin of Baupläne and its implications. Pp. 209222in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Valentine, J. W. 1991. Major factors in the rapidity and extent of the metazoan radiation during the Proterozoic-Phanerozoic transition. Pp. 1113in Simonetta, A. and Conway Morris, S., eds. The early evolution of Metazoa and the significance of problematic taxa. Cambridge University Press.Google Scholar
Valentine, J. W. 1992. The macroevolution of phyla. Pp. 525553in Lipps, J. H. and Signor, P. W., eds. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Valentine, J. W., and Erwin, D. H. 1987. Interpreting great developmental experiments: the fossil record. Pp. 71107in Raff, R. A. and Raff, E. C., eds. Development as an evolutionary process. Liss, New York.Google Scholar
Valentine, J. W., Collins, A. G., and Meyer, C. P. 1994. Morphological complexity increase in metazoans. Paleobiology 20:131142.CrossRefGoogle Scholar
Van Valen, L. 1974. Multivariate structural statistics in natural history. Journal of Theoretical Biology 45:235247.CrossRefGoogle ScholarPubMed
Wachsmuth, C., and Springer, F. 1897. The North American Crinoidea Camerata. Harvard College Museum of Comparative Zoology Memoir 20:1897, 21:plates 1-83.Google Scholar
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses: examples with early Paleozoic gastropods. Paleobiology 21(in press).CrossRefGoogle Scholar
Wanner, J. 1916. Die permischen Echinodermen von Timor, Teil 1. Paläontologie von Timor, part 6, number 11:1329.Google Scholar
Wanner, J. 1924. Die permischen Krinoiden von Timor. Jaarboek van het Mijnwezen in Nederlandsch Oost-Indië, Verhandelingen 50(3):1348.Google Scholar
Ward, P. D. 1980. Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology 6:3243.CrossRefGoogle Scholar
Warn, J. M. 1975. Monocyclism vs. dicyclism: a primary schism in crinoid phylogeny? Bulletins of American Paleontology 67(287):423441.Google Scholar
Webster, G. D. 1969. Bibliography and index of Paleozoic crinoids, 1942-1968. Geological Society of America Memoir 137:1341.Google Scholar
Webster, G. D. 1977. Bibliography and index of Paleozoic crinoids, 1969-1973. Geological Society of America Microform Publication 8:1235.Google Scholar
Webster, G. D. 1981. New crinoids from the Naco Formation (Middle Pennsylvanian) of Arizona and a revision of the family Cromyocrinidae. Journal of Paleontology 55:11761199.Google Scholar
Webster, G. D. 1986. Bibliography and index of Paleozoic crinoids, 1974-1980. Geological Society of America Microform Publication 16:1405.Google Scholar
Webster, G. D. 1987. Permian crinoids from the type-section of the Callytharra Formation, Callytharra Springs, Western Australia. Alcheringa 11:95135.CrossRefGoogle Scholar
Webster, G. D. 1988. Bibliography and index of Paleozoic crinoids and coronate echinoderms, 1981-1985. Geological Society of America Microform Publication 18:1235.Google Scholar
Webster, G. D. 1990. New Permian crinoids from Australia. Palaeontology 33:4974.Google Scholar
Webster, G. D. 1993. Bibliography and index of Paleozoic crinoids, 1986-1990. Geological Society of America Microform Publication 25:1204.Google Scholar
Webster, G. D., and Jell, P. A. 1992. Permian echinoderms from Western Australia. Memoirs of the Queensland Museum 32:311373.Google Scholar
Whittington, H. B. 1966. Phylogeny and distribution of Ordovician trilobites. Journal of Paleontology 40:696737.Google Scholar
Whittington, H. B. 1980. The significance of the fauna of the Burgess Shale, Middle Cambrian, British Columbia. Proceedings of the Geologists' Association 91:127148.CrossRefGoogle Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison between Cambrian and Recent arthropods. Paleobiology 20:93130.CrossRefGoogle Scholar
Witzke, B. J., and Strimple, H. L. 1981. Early Silurian camerate crinoids of eastern Iowa. Proceedings of the Iowa Academy of Sciences 88:101137.Google Scholar