Skip to main content Accessibility help
×
Home

Functional analysis of archaeocyathan skeletal morphology and its paleobiological implications

  • Michael Savarese (a1)

Abstract

A biomechanical study of archaeocyathan (phylum Archaeocyatha) skeletal construction was undertaken in order to compare its function with that of poriferans. Flume experiments were conducted on three cylindrical, brass models of regular archaeocyathans. Two of these, the porous-septate and aporous-septate models (i.e., possessing septa either with or without pores), represent an ontogenetic series; regular archaeocyathans (class Regulares) typically exhibit a reduction in septal porosity as they grow and many have aporous septa as adults. The third model is aseptate and represents a morphology that is not found in the fossil record. All models exhibit passive entrainment of flow during flume testing, a phenomenon on which modern sponges depend for suspension feeding. Flow direction through the models is consistent with predictions of the spongiomorph-affinity hypothesis. The three models behave quite differently, however. The aseptate model is least effective at passive entrainment. Although some fluid exits the top of the central cavity (or osculum), a great deal of fluid is entrained out the top of the intervallum and also leaks out the outer wall. Flow induction from the oscula of the septate models is augmented when compared to the aseptate model. The porous-septate model exhibits slight leakage from the outer wall, and a dye-rich plume exits the top of the intervallum. Alternatively, the aporous-septate model exhibits no outer-wall leakage and no entrainment from the intervallum. These differences in flow pattern between the porous- and aporous-septate models suggest a hitherto unknown function for septa. Imperforate septa prohibit the migration of fluid through the intervallum to the low-pressure, downstream side where leakage occurs. The ontogenetic shift in septal porosity, common to many archaeocyathan species, may be a mechanism by which outer-wall leakage is avoided later in life. Archaeocyathans would have encountered progressively higher ambient current velocities as their height increased through growth. Outer-wall leakage is not a problem at low velocities or small sizes, but leakage becomes serious at higher velocities when tall, adult morphologies are attained.

Copyright

References

Hide All
Alexander, D. E., and Ghiold, J. 1980. The functional significance of the lunules in the sand dollar, Mellita quinquiesperforata. Biological Bulletin 159:561570.
Balsam, W. L., and Vogel, S. 1973. Water movement in archaeocyathids: evidence and implications of passive flow in models. Journal of Paleontology 47:979984.
Bergquist, P. R. 1978. Sponges. University of California Press, Berkeley.
Bergquist, P. R., and Sinclair, M. E. 1968. The morphology and behaviour of larvae of some intertidal sponges. New Zealand Journal of Marine and Freshwater Research 2:426436.
Bidder, G. P. 1923. The relation of the form of a sponge to its currents. Quarterly Journal of the Microscopical Society 67:292323.
Billings, E. 1861. New species of Lower Silurian fossils: on some new or little-known species of Lower Silurian fossils from the Postdam Group (Primordial zone). Geological Survey of Canada (Montreal).
Billings, E. 1865. On some new or little-known species of Lower Silurian fossils from the Potsdam group (Primordial zone). Geological Survey of Canada (Montreal) 1:118.
Bornemann, J. G. 1884. Bericht iiber die Fortsetzung seiner Untersuchungen cambrischer Archaeocyathus-Formen und verwandter Organismen von der Insel Sardinien. Zeitschrift der Deutschen Geologischen Gesellschaft 36:702706.
Bornemann, J. G. 1886. Die Versteinerungen des Cambrischen Schichten-systems der Insel Sardinien nebst vergleichenden Untersuchungen iiber analoge Vorkommisse aus andern Landern. Erste Abteilung iii. Archaeocyathinae. Nova Acta Academiae Caesareae Leopoldino-Carolinae 51:2878.
Dawson, J. W. 1865. On the structure of certain organic remains in the Laurentian limestones of Canada. Quarterly Journal of the Geological Society of London 21:5159.
Debrenne, F., and Rozanov, A. Yu. 1983. Paleogeographic and stratigraphic distribution of regular Archaeocyatha (Lower Cambrian fossils). Geobios 16:727736.
Debrenne, F., and Vacelet, J. 1984. Archaeocyatha: is the sponge model consistent with their structural organization? Palaeontographica Americana 54:358369.
Debrenne, F., and Voronin, Yu. 1971. The significance of septal perforation for the classification of ajacicyathids. Paleontologicheskii Zhurnal 3:2631. [In Russian.]
Debrenne, F., and Wood, R. 1990. A new Cambrian sphinctozoan sponge from North America, its relationship to archaeocyaths and the nature of early Cambrian sphinctozoans. Geological Magazine 127:435443.
Debrenne, F., Rozanov, A. Yu., and Webers, G. F. 1984. Upper Cambrian Archaeocyatha from Antarctica. Geological Magazine 121:291299.
DeLaubenfels, M. W. 1949. The sponges of Woods Hole and adjacent waters. Bulletin of the Museum of Comparative Zoology 103:155.
Fisher, D. C., and Nitecki, M. H. 1982. Problems in the analysis of receptaculitid affinities. Third North American Paleontological Convention 1:181186.
Gravestock, D. I. 1984. Archaeocyatha from lower parts of the Lower Cambrian carbonate sequence in South Australia. Association of Australasian Palaeontologists Memoir 2:1139.
Handfield, R. C. 1971. Archaeocyatha from the Mackenzie and Cassiar Mountains, Northwest Territory and British Columbia. Geological Survey of Canada Bulletin 201:1119.
Hill, D. 1965. Archaeocyatha from Antarctica and a review of the Phylum, Trans-Antarctic Expedition (1955-1958). Scientific Reports no. 10, Geology 3, London.
Hill, D. 1972. Archaeocyatha. Part Ein Teichert, C., ed. Treatise on Invertebrate Paleontology, Geological Society of America, Boulder, Colo, and University of Kansas Press, Lawrence, Kans.
Hinde, G. J. 1889. On Archaeocyathus Billings, and on other genera, allied to or associated with it, from the Cambrian strata of North America, Spain, Sardinia and Scotland. Quarterly Journal of the Geological Society of London 45:125148.
Kruse, P. D. 1982. Archaeocyathan biostratigraphy of the Gnalta Group at Mount Wright, New South Wales. Palaeontographica, Abteilung A 177:129212.
LaBarbera, M. 1977. Brachiopod orientation to water movement. I. Theory, laboratory behavior, and field orientations. Paleobiology 3:270287.
Leigh, E. G. 1971. Adaptation and diversity; natural history and the mathematics of evolution. Freeman, Cooper, San Francisco.
Meek, F. B. 1868. Preliminary notice of a remarkable new genus of corals, probably typical of a new family. American Journal of Science, Ser. 2 45:6264.
Murdock, G. R., and Vogel, S. 1978. Hydrodynamic induction of water flow in a keyhole limpet (Gastropoda, Fissurellidae). Comparative Biochemistry and Physiology 61A:227231.
Nitecki, M. H., Zhuravleva, I. T., Myagkova, Y. I., and Tumi, D. F. 1981. Similarity of Soanites bimuralis to Archaeocyatha and receptaculitids. Paleontological Journal 1:59.
Okulitch, V. J. 1935. Cyathospongia—a new class of Porifera to include the Archaeocyathinae. Transactions of the Royal Society of Canada, Ser. 3, Sec. 4. 29:75106.
Okulitch, V. J. 1937. Some changes in nomenclature of Archaeocyathi (Cyathospongia). Journal of Paleontology 11:251252.
Okulitch, V. J. 1943. North American Pleospongia. Geological Society of America Special Publication 48.
Okulitch, V. J. 1946. Intervallum structure of Cambrocyathus amourensis. Journal of Paleontology 20:275276.
Okulitch, V. J. 1950. Review of a paper by Vologdin on the structure of living tissue of the Regular Archaeocyathi. Journal of Paleontology 24:513515.
Okulitch, V. J., and DeLaubenfels, M. W. 1953. The systematic position of Archaeocyatha (Pleosponges). Journal of Paleontology 27:481485.
Reiswig, H.M. 1971. In situ pumping activities of tropical Demospongiae. Marine Biology 9:3850.
Rowland, S. M., and Gangloff, R. A. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios 3:111135.
Rozanov, A. Yu. 1973. Regularities in the morphological evolution of Archaeocyatha and problems of stage division of the Lower Cambrian. Akademiia Nauk SSSR, Trudy Geologicheskii Institut 241:1164. [In Russian.]
Rozanov, A. Yu., and Debrenne, F. 1974. Age of Archaeocyathid assemblages. American Journal of Science 274:833848.
Savarese, M. 1988. Functional analysis of archaeocyathan skeletal morphology: implications for the group's paleobiology. Geological Society of America Abstracts with Programs 20(7):A201.
Savarese, M., and Signor, P. W. 1989. New archaeocyathan occurrences in the upper Harkless Formation (Lower Cambrian of western Nevada). Journal of Paleontology 63:539549.
Telford, M. 1981. A hydrodynamic interpretation of sand dollar morphology. Bulletin of Marine Science 31:605622.
Telford, M. 1983. An experimental analysis of lunule function in the sand dollar Mellita quinquiesperforata. Marine Biology 76:125134.
Toll, E. von. 1899. Beiträge zur Kenntniss des sibirischen Cambrium. Mémoires de l'Academie Imperiale des Sciences de Saint-Petersbourg, Sér. 8, Classe des Sciences Physiques et Mathematique 8:157.
Vacelet, J. 1979. Description et affinités d'une Eponge Sphinctozoaire actuelle. Pp. 483493in Lévi, C. and Boury-Esnault, N., eds. Biologie des spongiaires. Colloques Internationaux, Centre National de la Recherche Scientifique, Vol. 291. Editions du Centre National de la Recherche Scientifique, Paris.
Vogel, S. 1974. Current-induced flow through the sponge, Halichondria. Biological Bulletin 147:443456.
Vogel, S. 1977a. Flows in organisms induced by movement of the external medium. Pp. 285297in Pedley, T. J., ed. Scale effects in animal locomotion. Academic Press, London.
Vogel, S. 1977b. Current-induced flow through living sponges in situ. Proceedings of the National Academy of Sciences U.S.A. 74:20692071.
Vogel, S. 1978a. Organisms that capture currents. Scientific American 239:128139.
Vogel, S. 1978b. Evidence for one-way valves in the water flow system of sponges. Journal of Experimental Biology 76:137148.
Vogel, S. 1981. Life in moving fluids. Willard Grant, Boston.
Vogel, S., and Bretz, W. L. 1972. Interfacial organisms: passive ventilation in the velocity gradients near surfaces. Science (Washington, D.C.) 175:210211.
Vogel, S., Ellington, C. P. Jr., and Kilgore, D. C. Jr. 1973. Windinduced ventilation of the burrow of the prairie dog, Cynomys ludovicianus. Journal of Comparative Physiology 84:114.
Vologdin, A. G. 1948. On the structure of the soft parts of the regular Archaeocyatha. Izvestiya Akademiia Nauk SSSR. Biologic Series 1:9399. [In Russian.]
Weir, J. S. 1973. Air flow, evaporation and mineral accumulation in mounds of Macrotermes subhyalinus (Rambur). Journal of Animal Ecology 41:509520.
Wood, R. A. 1986. The biology and taxonomy of Mesozoic stromatoporoids. Unpublished Ph.D. dissertation. Open University, Milton Keynes, United Kingdom.
Zhuravlev, A. Yu. 1985. Recent Archaeocyatha? Pp. 2433in Sokolov, B. S. and Zhuravleva, I. T., eds. Problematiki pozdnego dokembriya i paleozoya. Trudy Instituta Geologii i Geofiziki, Vol. 632. Akademiia Nauk SSSR, Sibirskoe Otdelenie. “Nauka,” Moscow. [In Russian.]
Zhuravlev, A. Yu. 1989. Poriferan aspects of archaeocythan skeletal function. Association of Australasian Palaeontologists, Memoir 8:387399.
Zhuravlev, A. Yu., and Elkina, V. N. 1974. Archaeocyatha from Siberia. Academiia Nauk SSSR, Sibirskoe Otdelenie, Trudy Instituta Geologii i Geofiziki 230:1167. [In Russian.]
Zhuravleva, I. T. 1959. On the position of the Archaeocyatha in a phylogenetic system. Paleontologicheskii Zhurnal 4:3040. [In Russian.]
Zhuravleva, I. T. 1960. Archaeocyatha from the Siberian Platform. Izdatel'stvo Akademii Nauk SSSR, Moscow. [In Russian.]
Zhuravleva, I. T. 1970. Porifera, Sphinctozoa, Archaeocyathi—their connections. Symposia of the Zoological Society of London 25:4159.
Zhuravleva, I. T., and Miagkova, E. I. 1972. Archaeata—a new group of Paleozoic organisms. Pp. 714in Paleontologiya Myezhdunarodnyy Geologicheskiy Kongress, XXIV Sessiya, Nauka, Moscow. [In Russian.]

Related content

Powered by UNSILO

Functional analysis of archaeocyathan skeletal morphology and its paleobiological implications

  • Michael Savarese (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.