Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T12:45:26.132Z Has data issue: false hasContentIssue false

Estimating soil pCO2 using paleosol carbonates: implications for the relationship between primary productivity and faunal richness in ancient terrestrial ecosystems

Published online by Cambridge University Press:  08 February 2016

Timothy S. Myers
Affiliation:
Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, United States of America. E-mail: smyers@smu.edu
Neil J. Tabor
Affiliation:
Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, United States of America. E-mail: smyers@smu.edu
Louis L. Jacobs
Affiliation:
Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, United States of America. E-mail: smyers@smu.edu
Octávio Mateus
Affiliation:
CICEGe, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829–516 Caparica, Portugal; Museu da Lourinhã, Rua João Luis de Moura, 2530-157 Lourinhã, Portugal

Abstract

In this paper we present a method for estimating soil pCO2 in ancient environments using the measured carbon-isotope values of pedogenic carbonates and plant-derived organic matter. The validity of soil pCO2 estimates proves to be highly dependent on the organic δ13C values used in the calculations. Organic matter should be sourced from the same paleosol profiles as sampled carbonates to yield the most reliable estimates of soil pCO2. In order to demonstrate the potential use of soil pCO2 estimates in paleoecological and paleoenvironmental studies, we compare samples from three Upper Jurassic localities. Soil pCO2 estimates, interpreted as a qualitative indicator of primary paleoproductivity, are used to rank the Late Jurassic terrestrial environments represented by the Morrison Formation in western North America, the informally named Lourinhã formation in Western Europe, and the Stanleyville Group in Central Africa. Because modern terrestrial environments show a positive correlation between primary productivity and faunal richness, a similar relationship is expected in ancient ecosystems. When the relative paleoproductivity levels inferred for each study area are compared with estimates of dinosaur generic richness, a positive correlation emerges. Both the Morrison and Lourinhã formations have high inferred productivity levels and high estimated faunal richness. In contrast, the Stanleyville Group appears to have had low primary productivity and low faunal richness. Paleoclimatic data available for each study area indicate that both productivity and faunal richness are positively linked to water availability, as observed in modern terrestrial ecosystems.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amundson, R. 2001. The carbon budget in soils. Annual Review of Earth and Planetary Sciences 29:535562.CrossRefGoogle Scholar
Andrews, J. A., and Schlesinger, W. H. 2001. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles 15:149162.CrossRefGoogle Scholar
Antunes, M. T., and Mateus, O. 2003. Dinosaurs of Portugal. Comptes Rendus Palevol 2:7795.CrossRefGoogle Scholar
Arratia, G., Kriwet, J., and Heinrich, W.-D. 2002. Selachians and actinopterygians from the Upper Jurassic of Tendaguru, Tanzania. Mitteilungen aus dem Museum für Naturkunde Berlin, Geowissenschaftliche Reihe 5:207230.Google Scholar
Beerling, D. J., and Chaloner, W. G. 1992. Stomatal density as an indicator of past atmospheric CO2 concentration. The Holocene 2:7178.CrossRefGoogle Scholar
Berner, R. A. 1990. Atmospheric carbon dioxide levels over Phanerozoic time. Science 249:13821386.CrossRefGoogle ScholarPubMed
Berner, R. A. 1994. GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 294:5691.CrossRefGoogle Scholar
Berner, R. A. 2006a. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70:56535664.CrossRefGoogle Scholar
Berner, R. A. 2006b. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. American Journal of Science 306:295302.CrossRefGoogle Scholar
Berner, R. A. 2008. Addendum to “Inclusion of the Weathering of Volcanic Rocks in the GEOCARBSULF Model(Berner 2006, American Journal of Science 306: 295–302). American Journal of Science 308:100103.CrossRefGoogle Scholar
Berner, R. A. and Z., 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 301:182204.CrossRefGoogle Scholar
Boutton, T. W. 1991. Stable carbon isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis. Pp. 155171inColeman, D. C. and Fry, B., eds. Carbon isotope techniques. Academic Press, New York.CrossRefGoogle Scholar
Bowen, G. J., and Beerling, D. J. 2004. An integrated model for soil organic carbon and CO2: Implications for paleosol carbonate pCO2 paleobarometry. Global Biogeochemical Cycles 18:GB1026.CrossRefGoogle Scholar
Bradford, J. B., Lauenroth, W. K., Burke, I. C., and Paruelo, J. M. 2006. The influence of climate, soils, weather, and land use on primary production and biomass seasonality in the US Great Plains. Ecosystems 9:934950.CrossRefGoogle Scholar
Breecker, D. O., Sharp, Z. D., and McFadden, L. D. 2009. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological Society of America Bulletin 121:630640.CrossRefGoogle Scholar
Brook, G. A., Folkoff, M. E., and Box, E. O. 1983. A world model of soil carbon dioxide. Earth Surface Processes and Landforms 8:7988.CrossRefGoogle Scholar
Budyko, M. I., Ronov, A. B., and Yanshin, A. L. 1985. Changes in the chemical composition of the atmosphere during the Phanerozoic. International Geology Review 27:423433.CrossRefGoogle Scholar
Buyanovsky, G. A., and Wagner, G. H. 1983. Annual cycles of carbon dioxide level in soil air. Soil Science Society of America Journal 47:11391145.CrossRefGoogle Scholar
Cahen, L. 1983. Le Groupe de Stanleyville (Jurassique supérieur et Wealdien de l'intérieur de la République de Zaïre). Révision des connaissances. Pp. 73–91inRapport annuel du Department de géologie et de mineralogie du Musée royal de l'Afrique centrale 1981–82.Google Scholar
Cahen, L., and Lepersonne, J. 1955. Les formations Mésozoiques de l'intérieur du Congo. Resumé des connaissances et relations avec les régions limitrophes. Pp. 221228inRéunion de Nairobi (7–11 September 1954): Congrès Géologique International Association des Services Géologiques Africains, Compte rendu et communications. Bureau d'études géologiques et miniéres coloniales, Paris.Google Scholar
Cahen, L., Ferrand, J. J., Haarsma, M. J. F., Lepersonne, J., and Verbeek, T. 1959. Description du Sondage de Samba. Annales du Musée Royal du Congo Belge, Tervuren (Belgique), série in 8°, Sciences Géologiques 29:1210.Google Scholar
Carrano, M. T., and Velez-Juarbe, J. 2006. Paleoecology of the Quarry 9 vertebrate assemblage from Como Bluff, Wyoming (Morrison Formation, Late Jurassic). Palaeogeography, Palaeoclimatology, Palaeoecology 237:147159.CrossRefGoogle Scholar
Cerling, T. E. 1991. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. American Journal of Science 291:377400.CrossRefGoogle Scholar
Cerling, T. E. 1992. Use of carbon isotopes in paleosols as an indicator of the P(CO2) of the paleoatmosphere. Global Biogeochemical Cycles 6:307314.CrossRefGoogle Scholar
Cerling, T. E., and Quade, J. 1993. Stable carbon and oxygen isotopes in soil carbonates. InSwart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S., eds. Climate change in continental isotopic records. Geophysical Monograph 78:217231.Google Scholar
Cerling, T. E., Solomon, D. K., Quade, J., and Bowman, J. R. 1991. On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta 55:34033405.CrossRefGoogle Scholar
Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11:265270.Google Scholar
Chase, J. M., and Leibold, M. A. 2002. Spatial scale dictates the productivity-biodiversity relationship. Nature 416:427430.CrossRefGoogle ScholarPubMed
Churkina, G., and Running, S. W. 1998. Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1:206215.CrossRefGoogle Scholar
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., and Ni, J. 2001. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11 (2):356370.CrossRefGoogle Scholar
Colin, J. P. 1994. Mesozoic–Cenozoic lacustrine sediments of the Zaïre Interior Basin. Global Geological Record of Lake Basins 4:3136.Google Scholar
Colwell, R. K., and Coddington, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London, Series B. 345:101118.Google ScholarPubMed
Courty, M. A., Dhir, P. and Raghavan, H. 1987. Microfabrics of calcium carbonate accumulations in arid soils of western India. Pp. 227234inFedoroff, N., Bresson, L. M. and Courty, M. A., eds. Micromorphologie des soils. Proceedings of the 7th International Working Meeting on Soil Micromorphology. Association Française pour l'Etude du Sol, Paris.Google Scholar
Cox, L. R. 1953. Lamellibranchs from the Lualaba beds of the Belgian Congo. Revue de Zoologie et de Botanique Africaines 47:99107.Google Scholar
Cox, L. R. 1960. Further Mollusca from the Lualaba beds of the Belgian Congo. Annales de Museìe Royal de l'Afrique Centrale, Tervuren (Belgique), seìrie in 8°, Sciences Geìologiques 37:115.Google Scholar
Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. American Naturalist 137:2749.CrossRefGoogle Scholar
Defrétin-Lefranc, S. 1967. Étude sur les phyllopodes du bassin du Congo. Annales de Museìe Royal de l'Afrique Centrale, Tervuren (Belgique), seìrie in 8°, Sciences Geìologiques 56:1122.Google Scholar
DeLucia, E. H., Hamilton, J. G., Naidu, S. L., Thomas, R. B., Andrews, J. A., Finzi, A., Lavine, M., Matamala, R., Mohan, J. E., Hendrey, G. R., and Schlesinger, W. H. 1999. Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284:11771179.CrossRefGoogle ScholarPubMed
Demko, T. M., and Parrish, J. T. 1998. Paleoclimatic setting of the Upper Jurassic Morrison Formation. Modern Geology 22:283296.Google Scholar
Demko, T. M., Currie, B. S., and Nicoll, K. A. 2004. Regional paleoclimatic and stratigraphic implications of paleosols and fluvial/overbank architecture in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sedimentary Geology 167:115135.CrossRefGoogle Scholar
Dunagan, S. P., and Turner, C. E. 2004. Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sedimentary Geology 167:269296.CrossRefGoogle Scholar
Edwards, N. T. 1975. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Science Society of America Journal 39:361365.CrossRefGoogle Scholar
Egoroff, A., and Lombard, A. L. 1962. Présence des couches de Stanleyville dans le sous-sol de Léopoldville, République du Congo. Note préliminaire. Annales de la Société Géologique de Belgique 85 (1–4):103109.Google Scholar
Ekart, D. D., Cerling, T. E., Montañez, I. P., and Tabor, N. J. 1999. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. American Journal of Science 299:805827.CrossRefGoogle Scholar
Foster, J. R. 2003. Paleoecological analysis of the vertebrate fauna of the Morrison Formation (Upper Jurassic), Rocky Mountain Region, U.S.A. New Mexico Museum of Natural History and Science Bulletin 23:195.Google Scholar
Freeman, K. H., and Hayes, J. M. 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochemical Cycles 6:185198.CrossRefGoogle ScholarPubMed
Garrett, H. E., and Cox, G. S. 1973. Carbon dioxide evolution from the floor of an oak-hickory forest. Soil Science Society of America Journal 37:641644.CrossRefGoogle Scholar
Giresse, P. 2005. Mesozoic-Cenozoic history of the Congo Basin. Journal of African Earth Sciences 43:301315.CrossRefGoogle Scholar
Grekoff, N. 1957. Ostracodes du bassin du Congo. I. Jurassique supérieur et Crétacé inférieur du nord du bassin. Annales de Museìe Royal de l'Afrique Centrale, Tervuren (Belgique), seìrie in 8°, Sciences geìologiques 19:197.Google Scholar
Harris, J. D., and Dodson, P. 2004. A new diplodocoid sauropod dinosaur from the Upper Jurassic Morrison Formation of Montana, USA. Acta Palaeontologica Polonica 49:197210.Google Scholar
Hill, G. 1989. Distal alluvial fan sediments from the Upper Jurassic of Portugal: controls on their cyclicity and channel formation. Journal of the Geological Society, London 146:539555.CrossRefGoogle Scholar
Holland, S. M. 2003. Analytic rarefaction, Version 1.3. http://www.uga.edu/strata/software/index.html.Google Scholar
Joffre, R., and Ågren, G. I. 2001. From plant to soil: litter production and decomposition. Pp. 8399inRoy, J., Saugier, B., and Mooney, H. A., eds. Terrestrial global productivity. Academic Press, San Diego.CrossRefGoogle Scholar
Johnson, D., Geisinger, D., Walker, R., Newman, J., Vose, J., Elliot, K., and Ball, T. 1994. Soil pCO2, soil respiration, and root activity in CO2-fumigated and nitrogen-fertilized ponderosa pine. Plant and Soil 165:129138.CrossRefGoogle Scholar
Kadima, E., Delvaux, D., Sebagenzi, S. N., Tack, L., and Kabeya, S. M. 2011. Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data. Basin Research 23:499527.CrossRefGoogle Scholar
Karberg, N. J., Pregitzer, K. S., King, J. S., Friend, A. L., Wood, J. R. 2005. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 142:296306.CrossRefGoogle ScholarPubMed
Kiefer, R. H. 1990. Soil carbon dioxide concentrations and climate in a humid subtropical environment. Professional Geographer 42:182194.CrossRefGoogle Scholar
King, J. S., Pregitzer, K. S., Zak, D. R., Sober, J., Isebrands, J. G., Dickson, R. E., Hendrey, G. R., and Karnosky, D. F. 2001. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128:237250.CrossRefGoogle Scholar
Kobayashi, S. 1982. The rarefaction diversity measurement and the spatial distribution of individuals. Japanese Journal of Ecology 32:255258.Google Scholar
Kobayashi, S. 1983. Another calculation for the rarefaction diversity measurement for different spatial distributions. Japanese Journal of Ecology 33:101102.Google Scholar
Kowallis, B. J., Christiansen, E. H., Deino, A. L., Peterson, F., Turner, C. E., Kunk, M. J., and Obradovich, J. D. 1998. The age of the Morrison Formation. Modern Geology 22:235260.Google Scholar
Kullberg, J. C., Olóriz, F., Marques, B., Caetano, P. S., and Rocha, R. B. 2001. Flat-pebble conglomerates: a local marker for Early Jurassic seismicity related to syn-rift tectonics in the Sesimbra area (Lusitanian Basin, Portugal). Sedimentary Geology 139:4970.CrossRefGoogle Scholar
Leier, A., Quade, J., DeCelles, P., and Kapp, P. 2009. Stable isotopic results from paleosol carbonate in South Asia: paleoenvironmental reconstructions and selective alteration. Earth and Planetary Science Letters 279:242254.CrossRefGoogle Scholar
Lepersonne, J. 1974. Carte géologique du Zaïre, Éschelle 1:2,000,000. Commissaritate d'Etat aux Mines, Service Géologique, République du Zaïre.Google Scholar
Lieth, H. 1975. Modeling the primary productivity of the world. Pp. 237263inLieth, H. and Whittaker, R. H., eds. Primary productivity of the biosphere. Springer, New York.CrossRefGoogle Scholar
López-Arbarello, A., Rauhut, O. W. M., and Moser, K. 2008. Jurassic fishes of Gondwana. Revista de la Asociación Geológica Argentina 63:586612.Google Scholar
Loustau, D., Hungate, B., and Drake, B. G. 2001. Water, nitrogen, rising atmospheric CO2, and terrestrial productivity. Pp. 123167inRoy, J., Saugier, B., and Mooney, H. A., eds. Terrestrial global productivity. Academic Press, San Diego.CrossRefGoogle Scholar
McCrea, J. M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18:849857.CrossRefGoogle Scholar
McElwain, J. C., and Chaloner, W. G. 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic. Annals of Botany 76:389395.CrossRefGoogle Scholar
Milleson, M. E., and Tabor, N. J. 2008. Permian-Pennsylvanian climate from paleosols in north-central New Mexico, USA. Geological Society of America Abstracts with Programs 40: 337–5.Google Scholar
Mittelbach, G. G., Steiner, C. F., Scheiner, S. M., Gross, K. L., Reynolds, H. L., Waide, R. B., Willig, M. R., Dodson, S. I., and Gough, L. 2001. What is the observed relationship between species richness and productivity? Ecology 82:23812396.CrossRefGoogle Scholar
Mohr, B. A. R. 1989. New palynological information on the age and environment of Late Jurassic and Early Cretaceous vertebrate localities of the Iberian Peninsula (eastern Spain and Portugal). Berliner Geowissenschaftliche Abhandlungen, Reihe A. Geologie und Paläontologie 106:291301.Google Scholar
Mora, C. I., Driese, S. G., and Seager, P. G. 1991. Carbon dioxide in the Paleozoic atmosphere: evidence from carbon-isotope compositions of pedogenic carbonate. Geology 19:10171020.2.3.CO;2>CrossRefGoogle Scholar
Mora, C. I., Fastovsky, D. E., and Driese, S. G. 1993. Geochemistry and stable isotopes of paleosols. University of Tennessee Studies in Geology 23:165.Google Scholar
Mora, C. I., Driese, S. G. and Colarusso, L. A. 1996. Middle to Late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science 271:11051107.CrossRefGoogle Scholar
Myers, T. S. 2009. Late Jurassic Paleoclimate of Europe and Africa. Ph.D. dissertation. Southern Methodist University, Dallas, TX, 204pp.Google Scholar
Myers, T. S., Tabor, N. J., and Jacobs, L. L. 2011. Late Jurassic paleoclimate of Central Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 311:111125.CrossRefGoogle Scholar
Myers, T. S., Tabor, N. J., Jacobs, L. L., and Mateus, O.In press. Palaeoclimate of the Late Jurassic of Portugal: comparison with the western United States. Sedimentology.Google Scholar
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:15601563.CrossRefGoogle ScholarPubMed
Nordt, L., Orosz, M., Driese, S. G., and Tubbs, J. 2006. Vertisol carbonate properties in relation to mean annual precipitation: implications for paleoprecipitation estimates. The Journal of Geology 114:501510.CrossRefGoogle Scholar
O'Sullivan, R. B. 1992. The Jurassic Wanakah and Morrison formations in the Telluride-Ouray-Western Black Canyon area of southern Colorado. U.S. Geological Survey Bulletin 1927:124.Google Scholar
Parrish, J. T., Peterson, F., and Turner, C. E. 2004. Jurassic “savannah”: plant taphonomy and climate of the Morrison Formation (Upper Jurassic, Western USA). Sedimentary Geology 167:137162.CrossRefGoogle Scholar
Peterson, F. 1994. Sand dunes, sabkhas, streams, and shallow seas: Jurassic paleogeography in the southern part of the Western Interior Basin. Pp. 233272inCaputo, M. V., Peterson, J. A., and Franczyk, K. J., eds. Mesozoic systems of the Rocky Mountain Region, USA. SEPM, Rocky Mountain Section, Denver.Google Scholar
Quast, A., Hoefs, J., and Paul, J. 2006. Pedogenic carbonates as a proxy for palaeo-CO2 in the Palaeozoic atmosphere. Palaeogeography, Palaeoclimatology, Palaeoecology 242:110125.CrossRefGoogle Scholar
Rauhut, O. W. M. 2000. The dinosaur fauna from the Guimarota mine. Pp. 7582inMartin, T. and Krebs, B., eds. Guimarota: a Jurassic ecosystem. Pfeil, Munich.Google Scholar
Rauhut, O. W. M. 2001. Herbivorous dinosaurs from the Late Jurassic (Kimmeridgian) of Guimarota, Portugal. Proceedings of the Geologists' Association 112:275283.CrossRefGoogle Scholar
Rauhut, O. W. M. 2003. A tyrannosauroid dinosaur from the Upper Jurassic of Portugal. Palaeontology 46:903910.CrossRefGoogle Scholar
Rauhut, O. W. M., and López-Arbarello, A. 2009. Considerations on the age of the Tiouaren Formation (Iullemmeden Basin, Niger, Africa): implications for Gondwanan Mesozoic terrestrial vertebrate faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 271:259267.CrossRefGoogle Scholar
Rees, P. M., Ziegler, A. M., and Valdes, P. J. 2000. Jurassic phytogeography and climates: new data and model comparisons. Pp. 297318inHuber, B. T., Macleod, K. G., and Wing, S. L., eds. Warm climates in earth history. Cambridge University Press, Cambridge.Google Scholar
Retallack, G. J. 2001. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411:287290.CrossRefGoogle ScholarPubMed
Retallack, G. J. 2008. New transfer functions for estimating paleoproductivity in paleosols. Proceedings of the Oregon Academy of Science 46:25.Google Scholar
Retallack, G. J. 2009. Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike. Palaeogeography, Palaeoclimatology, Palaeoecology 281:5765.CrossRefGoogle Scholar
Romanek, C. S., Grossman, E. L., and Morse, J. W. 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56:419430.CrossRefGoogle Scholar
Royer, D. L., Berner, R. A., and Beerling, D. J. 2001. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth-Science Reviews 54:349392.CrossRefGoogle Scholar
Saint-Seine, P. 1955. Poissons fossiles de l'étage de Stanleyville (Congo belge), Premiere partie. La faune des argilites et schistes bitumineux. Annales de Museìe Royal de l'Afrique Centrale, Tervuren (Belgique), seìrie in 8°, Sciences Geìologiques 14:1126.Google Scholar
Saint-Seine, P., and Casier, E. 1962. Poissons fossiles des couches de Stanleyville (Congo), Deuxième partie. La faune marine des Calcaires de Songa. Annales de Museìe Royal de l'Afrique Centrale, Tervuren (Belgique), seìrie in 8°, Sciences Geìologiques 44:152.Google Scholar
Saint-Seine, P., Cahen, L., and Lepersonne, J. 1952. L'âge de l'étage de Stanleyville (série du Lualaba) et ses conséquences pour la stratigraphie du Congo. Bulletin de la Société Belge de Géologie de Paléontologie et d'Hydrologie 61:198207.Google Scholar
Scurlock, J. M. O., Johnson, K., and Olson, R. J. 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology 8:736753.CrossRefGoogle Scholar
Sellwood, B. W., and Valdes, P. J. 2006. Mesozoic climates: General circulation models and the rock record. Sedimentary Geology 190:269287.CrossRefGoogle Scholar
Sellwood, B. W., and Valdes, P. J. 2008. Jurassic climates. Proceedings of the Geologists' Association 119:517.CrossRefGoogle Scholar
Sheldon, N. D., and Tabor, N. J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews 95:152.CrossRefGoogle Scholar
Smith, A. G., Smith, D. G., and Funnell, B. M. 1994. Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, Cambridge.Google Scholar
Tabor, N. J., Yapp, C. J., and Montañez, I. P. 2004. Goethite, calcite, and organic matter from Permian and Triassic soils: carbon isotopes and CO2 concentrations. Geochimica et Cosmochimica Acta 68 (7):15031517.CrossRefGoogle Scholar
Tabor, N. J., Montañez, I. P., Steiner, M. B., and Schwindt, D. 2007. δ13C values of carbonate nodules across the Permian-Triassic boundary in the Karoo Supergroup (South Africa) reflect a stinking sulfurous swamp, not atmospheric CO2. Palaeogeography, Palaeoclimatology, Palaeoecology 252:370381.CrossRefGoogle Scholar
Thulborn, R. A. 1973. Teeth of ornithischian dinosaurs from the Upper Jurassic of Portugal. Memórias dos Serviços Geológicos de Portugal 22:89134.Google Scholar
Tipper, J. C. 1979. Rarefaction and rarefiction: the use and abuse of a method in paleoecology. Paleobiology 5:423434.CrossRefGoogle Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161:5988.CrossRefGoogle Scholar
Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G., Gough, L., Dodson, S. I., Juday, G. P., and Parmenter, R. 1999. The relationship between productivity and species richness. Annual Review of Ecology and Systematics 30:257300.CrossRefGoogle Scholar
Weigert, A. 1995. Isolierte Zähne von cf. Archaeopteryx sp. aus dem Oberen Jura der Kohlengrube Guimarota (Portugal). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1995:562576.CrossRefGoogle Scholar
Weishampel, D. B., Dodson, P., and Osmólska, H., eds. 2004. The Dinosauria. University of California Press, Berkeley.CrossRefGoogle Scholar
Witkamp, M. 1966. Rates of carbon dioxide evolution from the forest floor. Ecology 47:492494.CrossRefGoogle Scholar
Wright, V. P. 1990. A micromorphological classification of fossil and recent calcic and petrocalcic microstructures. Pp. 401407inDouglas, L. A., ed. Soil micromorphology: a basic and applied science. Elsevier, New York.Google Scholar
Yanbin, S., Gallego, O. F., and Martínez, S. 2004. The chonchostracan subgenus Orthestheria (Migransia) from the Tacuarembó Formation (Late Jurassic-?Early Cretaceous, Uruguay) with notes on its geological age. Journal of South American Earth Sciences 16:615622.CrossRefGoogle Scholar
Yapp, C. J., and Poths, H. 1992. Ancient atmospheric CO2 pressures inferred from natural gothites. Nature 355:342343.CrossRefGoogle Scholar
Yapp, C. J., and Poths, H. 1996. Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure. Earth and Planetary Science Letters 137 (1–4):7182.CrossRefGoogle Scholar
Zinke, J. 1998. Small theropod teeth from the Upper Jurassic coal mine of Guimarota (Portugal). Paläontologische Zeitschrift 72:179189.CrossRefGoogle Scholar
Zinke, J., and Rauhut, O. W. M. 1994. Small theropods (Dinosauria, Saurischia) from the Upper Jurassic and Lower Cretaceous of the Iberian Peninsula. Berliner Geowissenschaftliche Abhandlungen, Reihe E 13:163177.Google Scholar