Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T02:25:30.670Z Has data issue: false hasContentIssue false

Convergences and Trends in the Evolution of the Archosaur Pelvis

Published online by Cambridge University Press:  08 April 2016

Masaya Iijima*
Affiliation:
Department of Natural History Sciences, Hokkaido University, N10W8 Kita-ku, Sapporo, Hokkaido 060-0810, Japan. E-mail: miijima@mail.sci.hokudai.ac.jp
Yoshitsugu Kobayashi
Affiliation:
Hokkaido University Museum, Hokkaido University, N10W8 Kita-ku, Sapporo, Hokkaido 060-0810, Japan. E-mail: ykobayashi@museum.hokudai.ac.jp
*
Corresponding author

Abstract

The pelvic structure in non-avian archosaurs plays a key role in understanding the evolution of terrestrial locomotor patterns because the pelvis contains major attachment sites for proximal hind limb musculature. In order to investigate patterns of pelvic evolution in archosaurs, this study compiled three pelvic indices, as well as femoral head orientation, for 92 archosaur taxa. With the metrics and a reconstructed supertree, we examined the correlated evolution of the pelvis and femur, the correlation among pelvic components, and temporal trends in the evolution of the pelvis. The result shows that archosaurs with medially directed femoral heads have more cranially shifted iliac centroids and more posteriorly rotated pubes than taxa with anteromedially directed femoral heads. The craniad shift of the iliac centroid might be correlated to the posterior rotation of pubis. The pelvic structures of pterosaurs, ornithischians, sauropods, and avetheropods occupy a different morphospace from basal archosaurs, pseudosuchians, basal dinosauromorphs, basal theropods, and basal sauropodomorphs in having more cranially expanded ilia, more posteriorly rotated pubes, and medially deflected femoral heads. This may imply that pterosaurs and those derived dinosaurs independently underwent similar shifts in thigh muscles and locomotion. The evolutionary model fitting supports the early-burst model for iliac and pubic metrics in more inclusive archosaur clades, indicating that larger changes of archosaur pelves occurred in early times of the clade's history.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bakker, R. T. 1971. Dinosaur physiology and the origin of mammals. Evolution 25:636658.Google Scholar
Bakker, R. T. 1972. Anatomical and ecological evidence of endothermy in dinosaurs. Nature 238:8185.Google Scholar
Barrett, P. M., McGowan, A. J., and Page, V. 2009. Dinosaur diversity and the rock record. Proceedings of the Royal Society of London B 276:26672674.Google ScholarPubMed
Bates, K. T., and Schachner, E. R. 2012. Disparity and convergence in bipedal archosaur locomotion. Journal of the Royal Society Interface 9:13391353.Google Scholar
Bates, K. T., Maidment, S. C. R., Allen, V., and Barrett, P. M. 2012. Computational modeling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians. Journal of Anatomy 220:212232.Google Scholar
Bennett, S. C. 1990. A pterodactyloid pterosaur pelvis from the Santana Formation of Brazil: implications for terrestrial locomotion. Journal of Vertebrate Paleontology 10:8085.Google Scholar
Bennett, S. C. 1997. Terrestrial locomotion of pterosaurs: a reconstruction based on Pteraichnus trackways. Journal of Vertebrate Paleontology 17:104113.Google Scholar
Benton, M. J., and Clark, J. M. 1988. Archosaur phylogeny and the relationships of the Crocodylia. Pp. 295338inBenton, M. J., ed. The phylogeny and classification of the tetrapods, Vol. 1. Amphibians, reptiles, birds. Clarendon, Oxford.Google Scholar
Biewener, A. A. 1989. Scaling body support in mammals: limb posture and muscle mechanics. Science 245:4548.Google Scholar
Blob, R. W., and Biewener, A. A. 2001. Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American Alligator (Alligator mississippiensis). Journal of Experimental Biology 204:10991122.Google Scholar
Blomberg, S. P., Garland, T. Jr., and Ives, A. R. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717745.Google Scholar
Bonaparte, J. F. 1984. Locomotion in rauisuchid thecodonts. Journal of Vertebrate Paleontology 3:210218.Google Scholar
Brusatte, S. L., Benton, M. J., Ruta, M., and Lloyd, G. T. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321:14851488.Google Scholar
Burnham, D. A., Derstler, K. L., Currie, P. J., Bakker, R. T., Zhou, Z, and Ostrom, J. H. 2000. Remarkable new birdlike dinosaur (Theropoda: Maniraptora) from the Upper Cretaceous of Montana. University of Kansas Paleontological Contributions 13:114.Google Scholar
Butler, R. J., and Goswami, A. 2008. Body size evolution in Mesozoic birds: little evidence for Cope's rule. Journal of Evolutionary Biology 21:16731682.Google Scholar
Butler, R. J., Smith, R. M. H., and Norman, D. B. 2007. A primitive ornithischian dinosaur from the Late Triassic of South Africa, and the early evolution and diversification of Ornithischia. Proceedings of the Royal Society of London B 274:20412046.Google Scholar
Carpenter, K., Miles, C., Ostrom, J., and Cloward, K. 2005. Redescription of the small maniraptoran theropods Ornitholestes and Coelurus from the Upper Jurassic Morrison Formation of Wyoming. Pp. 4971inCarpenter, K., ed. The carnivorous dinosaurs. University of Indiana Press, Bloomington.Google Scholar
Carrano, M. T. 2000. Homoplasy and the evolution of dinosaur locomotion. Paleobiology 26:489512.Google Scholar
Carrano, M. T. 2005. The evolution of sauropod locomotion. Pp. 229249inRogers, C. K. and Wilson, J. A., eds. The sauropods: evolution and paleobiology. University of California Press, Berkeley.Google Scholar
Carrano, M. T. 2006. Body-size evolution in the Dinosauria. Pp. 225258inCarrano, M. T., Gaudin, T. J., Blob, R. W., and Wible, J. R., eds. Amniote paleobiology. University of Chicago Press, Chicago.Google Scholar
Carrano, M. T., and Hutchinson, J. R. 2002. Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda). Journal of Morphology 253:207228.Google Scholar
Charig, A. 1972. The evolution of the archosaur pelvis and hind-limb: an explanation in functional terms. Pp. 121155inJoysey, K. A., Kemp, T. S., eds. Studies in vertebrate evolution. Winchester, New York.Google Scholar
Charig, A. 1984. Competition between therapsids and archosaurs during the Triassic Period: a review and synthesis of current theories. Symposia of the Zoological Society of London 52:597628.Google Scholar
Chatterjee, S. 1985. Postosuchus, a new thecodontian reptile from the Triassic of Texas and the origin of tyrannosaurs. Philosophical Transactions of the Royal Society of London B 309:395460.Google Scholar
Colbert, E. H. 1964. Relationships of the saurischian dinosaurs. American Museum Novitates 2181:124.Google Scholar
Colbert, E. H. 1989. The Triassic dinosaur Coelophysis. Museum of Northern Arizona Bulletin 57:1160.Google Scholar
Dzik, J. 2003. A beaked herbivorous archosaur with dinosaur affinities from the early Late Triassic of Poland. Journal of Vertebrate Paleontology 23:556574.Google Scholar
Ewer, R. F. 1965. The anatomy of the thecodont reptile Euparkeria capensis Broom. Philosophical Transactions of the Royal Society of London B 248:379435.Google Scholar
Galton, P. M. 1970. The posture of hadrosaurian dinosaurs. Journal of Paleontology 44:464473.Google Scholar
Galton, P. M. 1976. Prosauropod dinosaurs (Reptilia: Saurischia) of North America. Postilla 169:198.Google Scholar
Galton, P. M., and Upchurch, P. 2004. Stegosauria. Pp. 343362in Weishampel et al. 2004.CrossRefGoogle Scholar
Garland, T. Jr. 1983. The relation between maximal running speed and body mass in terrestrial mammals. Journal of Zoology 199:157170.Google Scholar
Garland, T. Jr., Geiser, F., and Baudinette, R. V. 1988. Comparative locomotor performance of marsupial and placental mammals. Journal of Zoology 215:505522.Google Scholar
Gatesy, S. M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16:170186.CrossRefGoogle Scholar
Gatesy, S. M. 1991. Hind limb movements of the American alligator (Alligator mississippiensis) and postural grades. Journal of Zoology 224:577588.Google Scholar
Gatesy, S. M. 1997. An electromyographic analysis of hindlimb function in Alligator during terrestrial locomotion. Journal of Morphology 234:197212.Google Scholar
Gatesy, S. M. 1999a. Guineafowl hind limb function. I. Cineradiographic analysis and speed effects. Journal of Morphology 240:115125.Google Scholar
Gatesy, S. M. 1999b. Guineafowl hind limb function. II. Electromyographic analysis and motor pattern evolution. Journal of Morphology 240:127142.Google Scholar
Gauthier, J. A. 1986. Saurischian monophyly and the origin of birds. Memoirs of the California Academy of Sciences 8:155.Google Scholar
Gauthier, J. A., Nesbitt, S. J., Schachner, E. R., Bever, G. S., and Joyce, W. G. 2011. The bipedal stem crocodilian Poposaurus gracilis: inferring function in fossils and innovation in archosaur locomotion. Bulletin of the Peabody Museum of Natural History 52:107126.Google Scholar
Gilmore, C. W. 1933. On the dinosaurian fauna of the Iren Dabasu Formation. Bulletin of American Museum of Natural History 67:2378.Google Scholar
Hammer, Ø., Harper, A. T. D., and Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1), art. 4. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.Google Scholar
Harmon, L. J., Weir, J., Brock, C. D., Glor, R. E., and Challenger, W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129131. doi:10.1093/bioinformatics/btm538.Google Scholar
Hatcher, J. B. 1903. Osteology of Haplocanthosaurus, with description of a new species, and remarks on the probable habits of the Sauropoda and the age and origin of the Atlantosaurus beds. Memoirs of the Carnegie Museum 2:172.Google Scholar
Holtz, T. R. Jr. 2000. A new phylogeny of the carnivorous dinosaurs. Gaia 15:561.Google Scholar
Holtz, T. R. Jr., Molner, R. E., and Currie, P. J. 2004. Basal Tetanurae. Pp. 71110in Weishampel et al. 2004.Google Scholar
Hone, D. W. E., Dyke, G. J., Haden, M., and Benton, M. J. 2008. Body size evolution in Mesozoic birds. Journal of Experimental Biology 21:618624.Google Scholar
Hutchinson, J. R. 2001a. The evolution of pelvic osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society 131:123168.Google Scholar
Hutchinson, J. R. 2001b. The evolution of femoral osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society 131:169197.Google Scholar
Hutchinson, J. R. 2002. The evolution of hindlimb tendons and muscles on the line to crown-group birds. Comparative Biochemistry and Physiology A 133:10511086.Google Scholar
Hutchinson, J. R. 2006. The evolution of locomotion in archosaurs. Comptes Rendus Palevol 5:519530.Google Scholar
Hutchinson, J. R., and Gatesy, S. M. 2000. Adductors, abductors, and the evolution of archosaur locomotion. Paleobiology 26:734751.Google Scholar
Hutchinson, J. R., Anderson, F. C., Blemker, S. S., and Delp, S. L. 2005. Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed. Paleobiology 31:676701.Google Scholar
Hwang, K., Huh, M., Lockley, M. G., Unwin, D. M., and Wright, J. L. 2002. New pterosaur tracks (Pteraichnidae) from the Late Cretaceous Uhangri Formation, southwestern Korea. Geological Magazine 139:421435.Google Scholar
Hyder, E. S., Witton, M. P., and Martill, D. M. 2014. Evolution of the pterosaur pelvis. Acta Palaeontologica Polonica 59:109124. doi: http://dx.doi.org/10.4202/app.2011.1109.Google Scholar
Irmis, R. B. 2011. Evaluating hypotheses for the early diversification of dinosaurs. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101:397426.Google Scholar
Jenkins, F. A. Jr. 1971. Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non-cursorial mammals. Journal of Zoology, London 165:303315.Google Scholar
Kubo, T., and Benton, M. J. 2007. Evolution of hindlimb posture in archosaurs: limb stresses in extinct vertebrates. Palaeontology 50:15191529.Google Scholar
Kubo, T., and Benton, M. J. 2009. Tetrapod postural shift estimated from Permian and Triassic trackways. Palaeontology 52:10291037.Google Scholar
Maddison, W. P., and Maddison, D. R. 2011. MESQUITE: a modular system for evolutionary analysis, Version 2.75. http://mesquiteproject.org/.Google Scholar
Maidment, S. C. R., and Barrett, P. M. 2011. The locomotor musculature of basal ornithischian dinosaurs. Journal of Vertebrate Paleontology 31:12651291.Google Scholar
Maidment, S. C. R., Bates, K. T., Falkingham, P. L., VanBuren, C., Arbour, V., and Barrett, P. M. 2013. Locomotion in ornithischians dinosaurs: an assessment using three-dimensional computational modelling. Biological Reviews. doi: 10.1111/brv.12071.Google Scholar
Nesbitt, S. J. 2005. Osteology of the Middle Triassic pseudosuchian archosaur Arizonasaurus babbitti. Historical Biology 17:1947.Google Scholar
Nesbitt, S. J. 2011. The early evolution of archosaurs: relationships and the origin of major clade. Bulletin of the American Museum of Natural History 352:1292.Google Scholar
Off, W., and Matis, U. 2010. Excision arthroplasty of the hip joint in dogs and cats. Veterinary and Comparative Orthopaedics and Traumatology 23:297305.Google Scholar
Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Issac, N., and Pearse, W. 2013. Caper: comparative analyses in phylogenetics and evolution in R. http://cran.r-project.org/web/packages/caper/.Google Scholar
Ostrom, J. H. 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Peabody Museum of Natural History Bulletin 30:1165.Google Scholar
Padian, K. 1983. Osteology and functional morphology of Dimorphodon macronyx (Buckland) (Pterosauria: Rhamphorhynchoidea) based on new material in the Yale Peabody Museum. Postilla 189:144.Google Scholar
Padian, K., and Olsen, P. E. 1989. Ratite footprints and the stance and gait of Mesozoic theropods. Pp. 231242inGillette, D. D. and Lockley, M. G., eds. Dinosaur tracks and traces. Cambridge University Press, Cambridge.Google Scholar
Padian, K., Hutchinson, J. R., and Holtz, T. R. Jr. 1999. Phylogenetic definitions and nomenclature of the major taxonomic categories of the carnivorous Dinosauria (Theropoda). Journal of Vertebrate Paleontology 19:6980.Google Scholar
Parrish, J. M. 1986. Locomotor adaptations in the hindlimb and pelvis of the Thecodontia. Hunteria 1:235.Google Scholar
Parrish, J. M. 1987. The origin of crocodilian locomotion. Paleobiology 13:396414.Google Scholar
Perle, A. 1979. Segnosauridae—the new family of Theropoda from Lower Cretaceous of Mongolia. Mesozoic and Cenozoic Faunas from Mongolia. (In Russian.) Trudy, Sovmestnaâ Sovetsko-Mongol'skaâ paleontologičes-kaâ èkspediciâ 8:4555.Google Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Rasskin-Gutman, D. 1997. Pelvis, comparative anatomy. Pp. 536540inCurrie, P. J. and Padian, K., eds. Encyclopedia of dinosaurs. Academic Press, San Diego.Google Scholar
Rasskin-Gutman, D., and Buscalioni, A. D. 2001. Theoretical morphology of the archosaur (Reptilia: Diapsida) pelvic girdle. Paleobiology 27:5978.2.0.CO;2>CrossRefGoogle Scholar
Rawson, E. A., Aronsohn, M. G., and Burk, R. L. 2005. Simultaneous bilateral femoral head and neck ostectomy for the treatment of canine hip dysplasia. Journal of the American Animal Hospital Association. 41:166170.Google Scholar
Reilly, S. M., and Elias, J. A. 1998. Locomotion in Alligator mississippiensis: kinematic effects of speed and posture and their relevance to the sprawling-to-erect paradigm. Journal of Experimental Biology 201:25592574.Google Scholar
Romer, A. S. 1922. The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the American Museum of Natural History 46:517606.Google Scholar
Romer, A. S. 1923. The pelvic musculature of saurischian dinosaurs. Bulletin of the American Museum of Natural History 48:605617.Google Scholar
Romer, A. S. 1956. Osteology of the reptiles. University of Chicago Press, Chicago.Google Scholar
Sereno, P. C. 1991a. Basal archosaurs: phylogenetic relationships and functional implications. Journal of Vertebrate Paleontology 11(4)(Suppl.):153.Google Scholar
Sereno, P. C. 1991b. Lesothosaurus, “Fabrosaurids,” and the early evolution of Ornithischia. Journal of Vertebrate Paleontology 11:168197.Google Scholar
Sereno, P. C., and Arcucci, A. B. 1994. Dinosaurian precursors from the Middle Triassic of Argentina: Marasuchus lilloensis, gen. nov. Journal of Vertebrate Paleontology 14:5373.Google Scholar
Sookias, R. B., Bulter, R. J., and Benson, R. B. 2012. Rise of dinosaurs reveals major body-size transitions are driven by passive processes of trait evolution. Proceedings of the Royal Society of London B 279:21802187.Google Scholar
Unwin, D. M. 1997. Pterosaur tracks and the terrestrial ability of pterosaurs. Lethaia 29:373386.Google Scholar
Upchurch, P., Barrett, P. M., and Dodson, P. 2004. Sauropoda. Pp. 259322in Weishampel et al. 2004.Google Scholar
Vickaryous, M. K., Maryańska, T., and Weishampel, D. B. 2004. Ankylosauria. Pp. 363392in Weishampel et al. 2004.Google Scholar
Walker, A. D. 1977. Evolution of the pelvis in birds and dinosaurs. Pp. 319357inAndrews, S. M., Miles, R. S., and Walker, A. D., eds. Problems in vertebrate evolution. Academic Press, San Diego.Google Scholar
Walker, J. D., Geissman, J. W., Bowring, S. A., and Babcock, L. E. 2012. Geologic time scale, Version. 4.0. Geological Society of America. doi: 10.1130/2012.CTS004R3C.Google Scholar
Weishampel, D. B., Dodson, P., and Osmólska, H., eds. 2004. The Dinosauria, 2nd ed. University of California Press, Berkeley.Google Scholar
Wellnhofer, P. 1991. The illustrated encyclopedia of pterosaurs. Salamander Books, London.Google Scholar
Wild, R. 1978. Die Flugsaurier (Reptilia, Pterosauria) aus der Oberen Trias von Cene bei Bergamo, Italien. Bollettino della Società Paleontologica Italiana 17:176256.Google Scholar
Zanno, L. E., and Makovicky, P. J. 2012. No evidence for directional evolution of body mass in herbivorous theropod dinosaurs. Proceedings of the Royal Society of London B 280. doi: 10.1098/rspb.2012.2526.Google Scholar