Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T22:52:53.671Z Has data issue: false hasContentIssue false

An unusual pattern of divergence between two fossil gastropods: ecophenotypy, dimorphism, or hybridization?

Published online by Cambridge University Press:  08 February 2016

Dana H. Geary*
Affiliation:
Department of Geology and Geophysics, 1215 W. Dayton Street, University of Wisconsin, Madison, Wisconsin 53706

Abstract

The temporal dimension of fossil sequences provides a critical component to the study of intraspecific dynamics and species formation. Here I report on the branching and subsequent morphological evolution of two gastropods (Melanopsis fossilis and M. vindobonensis) from the Late Miocene of the Pannonian basin in eastern and central Europe. Although morphological divergence between species is rapid, intermediates between the two species co-occur with typical individuals for approximately 1 m.y. and then disappear. The long-term persistence of intermediates followed by their ultimate disappearance is a pattern that, to my knowledge, has not been previously observed.

Distinguishing genetic from ecophenotypic influences on shell form in freshwater prosobranchs is difficult. Nevertheless, consideration of the temporal, geographic, lithologic, and paleoecologic patterns of this sequence suggests that the morphologic differences between M. fossilis and M. vindobonensis had some genetic basis. Whether these forms were initially morphs of a single species or two species with some hybridization between them is impossible to determine. In either case, the morphological changes that resulted in M. vindobonensis were rapid, but the attainment of complete isolation between M. fossilis and M. vindobonensis apparently did not occur until approximately 1 m.y. later.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, C. C. 1915. The variations and ecological distribution of the snails of the genus Io. National Academy of Science, Washington, 2nd Memoir 12:1185.CrossRefGoogle Scholar
Bartha, F., Kleb, B., Körössy, L., Szabóné Kilényi, E., Szatmári, P., Széles, M., Szénás, G., and Toth, D. 1971. A Magyarországi Pannonkori Képzödmények Kutatásai. Akadémiai Kiadó, Budapest.Google Scholar
Barton, N. H., and Hewitt, G. M. 1985. Analysis of hybrid zones. Annual Review of Ecology and Systematics 16:113148.CrossRefGoogle Scholar
Berry, R. J., and Crothers, J. H. 1968. Stabilizing selection in the dog-whelk Nucella lapillus. Journal of Zoology, London 155:517.CrossRefGoogle Scholar
Berry, R. J., and Crothers, J. H. 1974. Visible variation in the dog-whelk Nucella lapillus. Journal of Zoology, London 174:123148.CrossRefGoogle Scholar
Bilgin, F. H. 1973. Studies on the functional anatomy of Melanopsis praemorsa (L.) and Zemelanopsis trifasciata (Gray). Proceedings of the Malacological Society of London 40:379393.Google Scholar
Boettger, C. R. 1944. Tierwelt der Nord- und Ostsee, Basommatophora, 35. Lieferung 9b2, Becker und Erler, Leipzig.Google Scholar
Boucot, A. J. 1982. Ecophenotypic or genotypic? Nature (London) 296:609.CrossRefGoogle Scholar
Brown, K. M., and Quinn, J. F. 1988. The effect of wave action on growth in three species of intertidal gastropods. Oecologia (Berlin) 75:420425.CrossRefGoogle ScholarPubMed
Brown, C.J.D., Clark, C., and Gleissner, B. 1938. The size of certain naiades from western Lake Erie in relation to shoal exposure. American Midland Naturalist Monograph 19:682701.CrossRefGoogle Scholar
Butlin, R. 1989. Reinforcement of premating isolation. Pp. 158179in Otte and Endler 1989.Google Scholar
Chambers, S. M. 1980. Genetic divergence between populations of Goniobasis (Pleurioceridae) occupying different drainage systems. Malacologia 20:6381.Google Scholar
Chambers, S. M. 1982. Chromosomal evidence for parallel evolution of shell sculpture pattern in Goniobasis. Evolution 36:113120.CrossRefGoogle ScholarPubMed
Cheatum, E. D., and Mouzon, E. D. 1934. Biometrical study of Goniobasis camlaensis Pilsbry from two diverse habitats. Field and Laboratory 3:1823.Google Scholar
Clarke, B., and Murray, J. 1969. Ecological genetics and speciation in land snails of the genus Partula. Biological Journal of the Linnean Society 1:3142.CrossRefGoogle Scholar
Collins, L. S. 1989. Relationship of environmental gradients to morphologic variation within Bulimina aculeata and Bulimina marginata, Gulf of Maine area. Journal of Foraminiferal Research 19:222234.CrossRefGoogle Scholar
Crothers, J. H. 1981. Shell-shape variation in Faroese dog whelks (Nucella lapillus [L.]). Biological Journal of the Linnean Society 15:327337.CrossRefGoogle Scholar
Crothers, J. H. 1983. Some observations on shell-shape variation in North American populations of Nucella lapillus (L.). Biological Journal of the Linnean Society 19:237274.CrossRefGoogle Scholar
Davis, G. M. 1982. Historical and ecological factors in the evolution, adaptive radiation, and biogeography of freshwater mollusks. American Zoologist 22:375395.CrossRefGoogle Scholar
Dazo, B. C. 1965. The morphology and natural history of Pleurocera acuta and Goniobasis livescens (Gastropoda: Cerithiacea: Pleuroceridae). Malacologia 3:180.Google Scholar
Diehl, S. R., and Bush, G. L. 1989. The role of habitat preference in adaptation and speciation. Pp. 345365in Otte and Endler 1989.Google Scholar
Dillon, R. T. 1984. Geographic distance, environmental difference, and divergence between isolated populations. Systematic Zoology 33:6982.CrossRefGoogle Scholar
Dillon, R. T., and Davis, G. M. 1980. The Goniobasis of southern Virginia and northwestern North Carolina: genetic and shell morphometric relationships. Malacologia 20:8398.Google Scholar
Endler, J. A. 1977. Geographic variation, speciation, and clines. Princeton University Press, Princeton, N.J.Google ScholarPubMed
Etter, R. J. 1988. Asymmetrical developmental plasticity in an intertidal snail. Evolution 42:322334.CrossRefGoogle Scholar
Frömming, E. 1956. Biologie der Mitteleuropäischen Süsswasserschnecken. Duner und Humpert, Berlin.Google Scholar
Geary, D. H. 1986. The evolutionary radiation of melanopsid gastropods in the Pannonian Basin (Late Miocene, Eastern Europe). Unpublished Ph.D. Dissertation. Harvard University, Cambridge, Mass.Google Scholar
Geary, D. H. 1988. Heterochrony in gastropods: a paleontological view. Pp. 183196. In McKinney, M. L. ed. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.CrossRefGoogle Scholar
Geary, D. H. 1990a. Exploring the roles of intrinsic and extrinsic factors in the evolutionary radiation of Melanopsis. Pp. 305321In Ross, R. M. and Allmon, W. D., eds. Causes of evolution, a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Geary, D. H. 1990b. Patterns of evolutionary tempo and mode in the radiation of Melanopsis (Gastropoda; Melanopsidae). Paleobiology 16:492511.CrossRefGoogle Scholar
Geary, D. H., Rich, J. A., Valley, J. W., and Baker, K. 1989. Isotopic evidence for salinity changes in the Late Miocene Pannonian Basin: effects on the evolutionary radiation of melanopsid gastropods. Geology 17:981985.2.3.CO;2>CrossRefGoogle Scholar
Gillet, S. 1946. Lamellibranches dulcicoles, les limnocardiides. Paris Révue Scientifique 84:343353.Google Scholar
Gillet, S., and Marinescu, F. 1971. La faune malacologique Pontienne de Rădmăneşti (Banat Roumain). Institut Géologique Mémoires 15.Google Scholar
Goodrich, C. 1945. Goniobasis livescens of Michigan. Miscellaneous Publications of the Museum of Zoology, University of Michigan 64:126.Google Scholar
Gould, S. J., and Woodruff, D. S. 1986. Evolution and systematics of Cerion (Mollusca: Pulmonata) on New Providence Island: a radical revision. Bulletin of the American Museum of Natural History 182:389490.Google Scholar
Hall, W. P., and Selander, R. K. 1973. Hybridization of karyotypically differentiated populations in the Sceloporus grammicus complex (Iguanidae). Evolution 27:226242.CrossRefGoogle ScholarPubMed
Handmann, R. 1887. Die fossile Conchylienfauna von Leobersdorf im Tertiarbecken von Wien. Münster.Google Scholar
Harrison, R. G. 1985. Barriers to gene exchange between closely related cricket species. II. Life cycle variation and temporal isolation. Evolution 39:244259.Google ScholarPubMed
Harrison, R. G. 1986. Pattern and process in a narrow hybrid zone. Heredity 56:337349.CrossRefGoogle Scholar
Harrison, R. G., and Rand, D. M. 1989. Mosaic hybrid zones and the nature of species boundaries. Pp. 111133in Otte and Endler 1989.Google Scholar
Heller, J. 1976. The effects of exposure and predation on the shell of two British winkles. Journal of Zoology, London 179:201213.CrossRefGoogle Scholar
Hewitt, G. M. 1988. Hybrid zones—natural laboratories for evolutionary studies. Trends in Ecology and Evolution 3:158167.CrossRefGoogle ScholarPubMed
Hewitt, G. M. 1989. The subdivision of species by hybrid zones. Pp. 85110in Otte and Endler 1989.Google Scholar
Howard, D. J. 1986. A zone of overlap and hybridization between two ground cricket species. Evolution 40:3443.CrossRefGoogle ScholarPubMed
Howard, D. J., and Harrison, R. G. 1984. Habitat segregation in ground crickets: experimental studies of adult survival, reproductive success, and oviposition preference. Ecology 65:6168.CrossRefGoogle Scholar
Hunt, W. G., and Selander, R. K. 1973. Biochemical genetics of hybridisation in European house mice. Heredity 31:1133.CrossRefGoogle ScholarPubMed
Jackson, J. F. 1973. The phenetics and ecology of a narrow hybrid zone. Evolution 27:5868.CrossRefGoogle ScholarPubMed
Jekelius, E. 1944. Sarmat und Pont von Soceni (Banat). Imprimeria Natională; Bucharest.Google Scholar
Jiřiček, R. 1974. Neogene Zonationen der Paratethys nach Ostracoden. Slovakien Akademie Wissenschaft; Bratislava and Erdolbetrieben Geologisches Abteilungen.Google Scholar
Kat, P. W., and Davis, G. M. 1983. Speciation in molluscs from Turkana Basin. Nature (London) 304:660661.CrossRefGoogle Scholar
Kemp, P., and Bertness, M. D. 1984. Snail shape and growth rates: evidence for plastic shell allometry in Littorina littorea. Proceedings of the National Academy of Science, USA 81:811813.CrossRefGoogle ScholarPubMed
Kitching, J. A., and Lockwood, J. 1974. Observations on shell form and its ecological significance in thaisid gastropods of the geuns Lepsiella in New Zealand. Marine Biology 28:131144.CrossRefGoogle Scholar
Kitching, J. A., Muntz, L., and Ebling, F. J. 1966. The ecology of Lough Ine. XV. The ecological significance of shell and body forms in Nucella. Journal of Animal Ecology 35:113126.CrossRefGoogle Scholar
Laxton, J. H. 1970. Shell growth in some New Zealand Cymatiidae (Gastropoda: Prosobranchia). Journal of Experimental Marine Biology and Ecology 4:250260.CrossRefGoogle Scholar
Lörenthey, E. 1902. Die Pannonische Fauna von Budapest. Separat Abdruck aus Palaeontographica Bild 48, Stuttgart.Google Scholar
Maynard Smith, J. 1966. Sympatric speciation. American Naturalist 100:637650.CrossRefGoogle Scholar
Mayr, E. 1942. Systematics and the origin of species. Columbia University Press, New York.Google Scholar
McLeod, M. J., and Moore, J. D. 1978. Change in the gastropod Io spinosa (Pleuroceridae; Mollusca) in 70 years. American Midland Naturalist 99:198205.CrossRefGoogle Scholar
Moore, H. B. 1936. The biology of Littorina littorea. Part I. Growth of the shell and tissues, spawning, length of life and mortality. Journal of the Marine Biological Association of the United Kingdom 21:721742.Google Scholar
Nagymarosy, A., and Müller, P. 1988. Some aspects of Neogene biostratigraphy in the Pannonian Basin. Pp. 6978In Royden, L. H. and Horvath, F., eds. The Pannonian Basin, a study in basin evolution. American Association of Petroleum Geologists Memoir 45: American Association of Petroleum Geologists and Hungarian Geological Society, Tulsa and Budapest.Google Scholar
Nicorici, E., and Karácsonyi, C. 1981. Fauna Panoniană de la Nadişu Hododului (Bazinul Şimleu) şi semnificaţia sa stratigrafică. Memoriile Secţiilor Ştiinţifice. Seria IV, tomul IV, (2):227233.Google Scholar
Otte, D., and Endler, J. A., eds. 1989. Speciation and its consequences. Sinauer, Sunderland, Massachusetts.Google Scholar
Papp, A. 1951. Das Pannon des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien 39:3941, 99–193.Google Scholar
Papp, A. 1985. Die Mollusken-Fauna des Pannonien der Zentralen Paratethys. Pp. 274339in Papp et al., 1985.Google Scholar
Papp, A., Jámbor, Á., and Steininger, F. F., eds. 1985. Chronostratigraphie und Neostratotypen, Miozan der Zentralen Paratethys, Bild VI, M6 Pannonien (Slavonien und Serbien). Akademiai Kiado, Budapest.Google Scholar
Pavlović, P. 1927. Les mollusques due Pontien inférieur des environs de Beograd. Annales Géologique Balkanique 9.Google Scholar
Phillips, B. F., Campbell, N. A., and Wilson, B. R. 1973. A multivariate study of geographic variation in the whelk Dicathais. Journal of Experimental Marine Biology and Ecology 11:2769.CrossRefGoogle Scholar
Plaget, J. 1929. L'adaptation de la Limnaea stagnalis aux milieux lacustres de la Suisse romande. Etude biometrique et génétique. Revue Suisse Zoologie 36:263531.Google Scholar
Sage, R. D., Whitney, J. B., and Wilson, A. C. 1986. Genetic analysis of a hybrid zone between domesticus and musculus mice (Mus musculus complex): hemoglobin polymorphisms. Current Topics in Microbiology and Immunology 127:7585.Google ScholarPubMed
Schindel, D. E. 1982. Resolution analysis: a new approach to the gaps in the fossil record. Paleobiology 8:340353.CrossRefGoogle Scholar
Short, L. L. 1972. Hybridization, taxonomy and avian evolution. Annals of the Missouri Botanical Garden 59:447453.CrossRefGoogle Scholar
Spight, T. M. 1973. Ontogeny, environment, and shape of a marine snail Thais lamellosa Gmelin. Journal of Experimental Marine Biology and Ecology 13:215228.CrossRefGoogle Scholar
Steininger, F. F., and Rögl, F. 1985. Die Palaogeographie der Zentralen Paratethys im Pannonien. Pp. 4656in Papp et al. 1985.Google Scholar
Steininger, F. F., Müller, C., and Rögl, F. 1988. Correlation of central paratethys, eastern paratethys, and Mediterranean Neogene stages. Pp. 7987In Royden, L. H., and Horvath, F. eds. The Pannonian Basin, a study in basin evolution. American Association of Petroleum Geologists Memoir 45. American Association of Petroleum Geologists and Hungarian Geological Society, Tulsa and Budapest.Google Scholar
Struhsaker, J. W. 1968. Selection mechanisms associated with intraspecific shell variation in Littorina picta (Prosobranchia: Mesogastropoda). Evolution 22:459480.CrossRefGoogle ScholarPubMed
Sümeghy, J. 1939. Zusammenfassender Bericht uber die Pannonischen Ablagerungen des Gyorer Beckens, Transdanubiens und des Alfold. Mitteilungen Jahrbuch Kugeln Ungarisches Anstalt. XXXII(2).Google Scholar
Tauber, C. A., and Tauber, M. J. 1989. Sympatric speciation in insects: perception and perspective. Pp. 307344in Otte and Endler 1989.Google Scholar
Tchernov, E. 1975. The molluscs of the Sea of Galilee. Malacologia 15:147184.Google Scholar
Vermeij, G. J. 1980. Gastropod shell growth rate, allometry, and adult size. Pp. 379394In Rhoads, D. C. and Lutz, R. A., eds. Skeletal growth of aquatic organisms. Plenum, New York.CrossRefGoogle Scholar
White, M.J.D., Blackith, R. E., Blackith, R. M., and Cheney, J. 1967. Cytogenetics of the viatica group of morabine grasshoppers. I. The “coastal” species. Australian Journal of Zoology 15:263302.CrossRefGoogle Scholar
Wiebe, A. H. 1926. Variations in the fresh-water snail Goniobasis livescens. Ohio Journal of Science 26:4968.Google Scholar
Williamson, P. G. 1980. Paleontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature (London) 293:437443.CrossRefGoogle Scholar
Williamson, P. G. 1983. Speciation in molluscs from Turkana Basin. Nature (London) 304:661663.CrossRefGoogle Scholar
Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, U. B., Helm-Bychowski, K. M., Higuchi, R. G., Palumbi, S. R., Proger, E. M., Sage, R. D., and Stoneking, M. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society 26:375400.CrossRefGoogle Scholar
Woodruff, D. S. 1973. Natural hybridization and hybrid zones. Systematic Zoology 22:213218.CrossRefGoogle Scholar
Woodruff, D. S. 1979. Postmating reproductive isolation in Pseudophryne and the evolutionary significance of hybrid zones. Science (Washington, D.C.) 203:561563.CrossRefGoogle ScholarPubMed
Woodruff, D. S., and Gould, S. J. 1980. Geographic differentiation and speciation in Cerion: a preliminary discussion of patterns and processes. Biological Journal of the Linnean Society 14:389416.CrossRefGoogle Scholar