Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T22:00:21.996Z Has data issue: false hasContentIssue false

Plate translocation in spatangoid echinoids: its morphological, functional and phylogenetic significance

Published online by Cambridge University Press:  08 April 2016

Kenneth J. McNamara*
Affiliation:
Department of Palaeontology, Western Australian Museum, Francis Street, Perth, Western Australia 6000

Abstract

Analysis of relative changes in plate position during ontogeny was made on a number of Cenozoic spatangoid echinoids: species of Breynia, Lovenia, Protenaster and Echinocardium. Contrary to the generally held view that adjacent ambulacral and interambulacral columns in echinoids always remain in a fixed relative position during ontogeny, many spatangoids show great fluidity in plate growth, with adjacent columns ‘sliding past’ one another during ontogeny. Furthermore, in many genera plates from one column may undergo strong lateral growth and bisect pairs of plates in adjacent rows. This phenomenon of relative plate movement, both meridional and equatorial, is herein termed ‘plate translocation’. It is considered to occur by localized resorption and redeposition in a narrow zone along adjacent plate boundaries. Plate translocation has been of considerable phylogenetic significance to spatangoids and, combined with an increase in differential allometries between plates, has been one of the most important factors in the evolution of the Spatangoida. Furthermore, the initiation of plate translocation in the apical system in certain Jurassic echinoids may have been the trigger for the migration of the periproct out of the apical system, and a major factor in the evolution of irregular echinoids. Heterochrony in plate growth has been critical in controlling the course of evolution in many lineages of spatangoid echinoids.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agassiz, A. 1872–74. Revision of the Echini. In Illus. Catal. Museum Comp. Zool. Harvard 7:1762.Google Scholar
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology. 5:296317.Google Scholar
Buchanan, J. B. 1966. The biology of Echinocardium cordatum (Echinodermata: Spatangoida) from different habitats. J. Mar. Biol. Assoc. U.K. 47:97114.Google Scholar
Chesher, R. H. 1968. The systematics of sympatric species in West Indian spatangoids: a revision of the genera Brissopsis, Plethotaenia, Paleopneustes and Saviniaster. Stud. Trop. Oceanogr. Miami. 7:1168.Google Scholar
Deutler, F. 1926. Über das Wachstum des Seeigelskeletts. Zool. Jb. 48:120200.Google Scholar
Duncan, P. M. 1885. On the structure of the ambulacrum of some fossil genera and species of regular Echinoidea. Qt. Jl. Geol. Soc. Lond. 41:419453.CrossRefGoogle Scholar
Durham, J. W. 1966. Evolution among the Echinoidea. Biol. Rev. 41:368391.CrossRefGoogle ScholarPubMed
Gordon, I. 1926. The development of the calcareous test of Echinocardium cordatum. Phil. Trans R. Soc. Lond. B. 215:255313.Google Scholar
Hawkins, H. L. 1913. The anterior ambulacrum of Echinocardium cordatum Penn., and the origin of compound plates in echinoids. Proc. Zool. Soc. Lond. 12:169181.Google Scholar
Hawkins, H. L. 1916. A remarkable structure in Lovenia forbesi from the Miocene of Australia. Geol. Mag. Dec. 6, vol. 3:100105.Google Scholar
Hawkins, H. L. 1920. The morphology and evolution of the ambulacrum in the Echinoidea Holectypoida. Phil. Trans R. Soc. Lond. B. 209:377480.Google Scholar
Jackson, R. T. 1912. Phylogeny of the Echini, with a revision of Palaeozoic species. Mem. Boston Soc. Nat. Hist. 7:1443.Google Scholar
Jensen, M. 1972. The ultrastructure of the echinoid skeleton. Sarsia. 48:3948.CrossRefGoogle Scholar
Jesionek-Szymanska, W. 1968. Irregular echinoids—an insufficiently known group. Lethaia. 1:5065.CrossRefGoogle Scholar
Kier, P. M. 1956. Separation of interambulacral columns from the apical system in the Echinoidea. J. Paleontol. 30:971974.Google Scholar
Kier, P. M. 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. J. Paleontol. 48(suppl.): Paleontol. Soc. Mem. 5:195.Google Scholar
Kobayashi, S. and Taki, J. 1969. Calcification in sea urchins: I. A tetracycline investigation of growth of the mature test in Strongylocentrotus intermedius. Calcif. Tissue Res. 4:210223.CrossRefGoogle Scholar
Lovén, S. 1874. Études sur les Échinoidées. K. Sv. Vetenskaps-Akad. Handl. 11(7):391.Google Scholar
Märkel, K. 1975. Wachstum des Coronarskeletes von Paracentrotus lividus. Zoomorphologie. 82:259280.CrossRefGoogle Scholar
Märkel, K. 1976. Struktur und Wachstum des Coronarskeletes von Arbacia lixula Linné (Echinodermata, Echinoidea). Zoomorphologie. 84:279299.Google Scholar
Märkel, K. 1981. Experimental morphology of coronal growth in regular echinoids. Zoomorphologie. 97:3152.Google Scholar
McKinney, M. L. 1986. Ecological causation of heterochrony: a test and implications for evolutionary theory. Paleobiology. 12:282289.Google Scholar
McNamara, K. J. 1982a. Taxonomy and evolution of living species of Breynia (Echinoidea: Spatangoida) from Australia. Rec. West. Aust. Mus. 10:167197.Google Scholar
McNamara, K. J. 1982b. Heterochrony and phylogenetic trends. Paleobiology. 8:130142.CrossRefGoogle Scholar
McNamara, K. J. 1984. A new species of the echinoid Pericosmus (Spatangoida: Pericosmidae) from north-west Australia. Rec. West. Aust. Mus. 11:87100.Google Scholar
McNamara, K. J. 1985. Taxonomy and evolution of the Cainozoic spatangoid echinoid Protenaster. Palaeontology. 28:311330.Google Scholar
McNamara, K. J. 1986. A guide to the nomenclature of heterochrony J. Paleontol. 60:413.Google Scholar
McNamara, K. J.In Press a. Heterochrony and the evolution of echinoids. In: Paul, C. R. C. and Smith, A. B., eds. Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press; Oxford.Google Scholar
McNamara, K. J.In Press b. The role of heterochrony in the evolution of spatangoid echinoids. In: Chaline, J. et al., eds. Ontogenèse et Evolution. C.N.R.S.; Paris.Google Scholar
McNamara, K. J. and Philip, G. M. 1980a. Australian Tertiary schizasterid echinoids. Alcheringa. 4:4765.Google Scholar
McNamara, K. J. and Philip, G. M. 1980b. Living Australian schizasterid echinoids. Proc. Linn. Soc. N.S.W. 104:127146.Google Scholar
McNamara, K. J. and Philip, G. M. 1984. A revision of the spatangoid echinoid Pericosmus from the Tertiary of Australia. Rec. West. Aust. Mus. 11:319356.Google Scholar
Melville, R. V. and Durham, J. W. 1966. Skeletal morphology. Pp. 220257. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Part U. Echinodermata 3, Asterozoa-Echinozoa. 695 pp. Geol. Soc. Am. and Univ. Kansas Press; Lawrence, Kansas.Google Scholar
Mortensen, T. 1921. Studies of the Development and Larval Forms of Echinoderms. 266 pp. Copenhagen.Google Scholar
Mortensen, T. 1951. A Monograph of the Echinoidea 5(2), Spatangoidae II. 593 pp. Reitzel; Copenhagen.Google Scholar
Moss, M. L. and Meehan, M. 1968. Growth of the echinoid test. Acta Anat. 69:409444.Google Scholar
Nichols, D. 1959. Changes in the chalk heart-urchin Micraster interpreted in relation to living forms. Phil. Trans R. Soc. Lond. B. 242:347437.Google Scholar
Philip, G. M. 1957. Interambulacral plate atrophy in Lovenia woodsi (Etheridge Fil.). Geol. Mag. 94:402408.Google Scholar
Philip, G. M. and Foster, R. J. 1971. Marsupiate Tertiary echinoids from south-eastern Australia and their zoogeographic significance. Palaeontology. 14:666695.Google Scholar
Seilacher, , 1979. Constructional morphology of sand dollars. Paleobiology. 5:191221.Google Scholar
Smith, A. B. 1980a. The structure and arrangement of echinoid tubercles. Phil Trans. R. Soc. Lond. B. 289:154.Google Scholar
Smith, A. B. 1980b. Stereom microstructure of the echinoid test. Spec. Pap. Palaeontol. 25:181.Google Scholar
Smith, A. B. 1984. Echinoid Paleobiology. 190 pp. Allen and Unwin; London.Google Scholar
Swan, E. F. 1966. Growth, autonomy and regeneration. Pp. 397434. In: Boolootian, R. A., ed. Physiology of Echinodermata. 822 pp. Wiley; New York.Google Scholar