Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.418 Render date: 2022-08-11T08:23:52.687Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Heterochrony and Phylogenetic Trends

Published online by Cambridge University Press:  14 July 2015

Abstract

A model is proposed, based on examples that have been interpreted as phylogenetic trends, to explain how directional morphological evolution at the species level can arise by heterochrony. The examples illustrated are of Tertiary to Recent rhynchonellide brachiopods, Cambrian olenellid trilobites, living spatangoid echinoids, Tertiary to Recent schizasterid echinoids, Cenomanian ammonites and Silurian monograptids. Morphological discontinuities between species along morphological gradients (which can be recognised both spatially and/or temporally), and temporal morphological stasis within species, are both consistent with the punctuated equilibria model of macroevolution. It is argued that morphological discontinuities have arisen by selection of morphological novelties produced by heterochronic processes. These novelties are preadaptations which allow ecological and, consequently, genetic isolation from ancestral species. Establishment of a heterochronic morphological gradient is only possible given a suitable environmental gradient. The terms “paedomorphocline” and “peramorphocline” are proposed for these heterochronic morphological gradients. Paedomorphoclines and peramorphoclines each comprise a number of species occupying a series of adaptive peaks, which have evolved sequentially through time by selection along an environmental gradient.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P. 1980. Ontogenesis and morphological diversification. Am. Zool. 20:653667.CrossRefGoogle Scholar
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology. 5:296317.CrossRefGoogle Scholar
Allan, R. S. 1960. The succession of Tertiary brachiopod faunas in New Zealand. Rec. Cant. Mus. 7:233268.Google Scholar
Bonner, J. T. 1968. Size and change in development and evolution. J. Paleontol. 42, Memoir 2:115.Google Scholar
Chesher, R. H. 1966. Redescription of the echinoid species Paraster floridiensis (Spatangoida: Schizasteridae). Bull. Mar. Sci. 16:119.Google Scholar
Cock, A. G. 1966. Genetical aspects of metrical growth and form in animals. Q. Rev. Biol. 41:131190.CrossRefGoogle ScholarPubMed
Cowie, J. and McNamara, K. J. 1978. Olenellus (Trilobita) from the Lower Cambrian strata of north-west Scotland. Palaeontology. 21:615634.Google Scholar
Dall, W. H. 1920. Annotated list of the Recent Brachiopoda in the collection of the United States National Museum with descriptions of thirty-three new forms. Proc. U.S. Natl. Mus. 57:261377.CrossRefGoogle Scholar
Ede, D. A. 1978. An Introduction to Developmental Biology. 246 pp. Wiley; New York.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman; San Francisco, California.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. 501 pp. Harvard Univ. Press; Cambridge, Massachusetts.Google Scholar
Gould, S. J. 1980. The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology. 6:96118.CrossRefGoogle Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.CrossRefGoogle Scholar
Grant, V. 1963. The Origin of Adaptations. 606 pp. Columbia Univ. Press; New York.Google Scholar
Hu, C. H. 1971. Ontogeny and sexual dimorphism of Lower Paleozoic Trilobita. Palaeontol. Am. 44:31155.Google Scholar
Hurst, J. M. and Watkins, R. 1978. Evolutionary patterns in a Silurian orthide brachiopod. Geol. Palaeontol. 12:73102.Google Scholar
Jell, P. A. 1978. Trilobite respiration and genal caeca. Alcheringa. 2:251260.CrossRefGoogle Scholar
Larson, A. 1980. Paedomorphosis in relation to rates of morphological and molecular evolution in the salamander Aneides flavipunctatus (Amphibia, Plethodontidae). Evolution. 34:117.CrossRefGoogle Scholar
Larson, A., Wake, D. B., Maxson, L. R., and Highton, R. D. 1981. A molecular phylogenetic perspective on the origin of morphological novelties in the salamanders of the tribe Plethodontini (Amphibia, Plethodontidae). Evolution. 35:405422.CrossRefGoogle Scholar
Lee, D. E. 1978. Aspects of the ecology and paleoecology of the brachiopod Notosaria nigricans (Sowerby). J. R. Soc. N.Z. 8:395417.CrossRefGoogle Scholar
Lee, D. E. 1980. Cenozoic and Recent rhynchonellide brachiopods of New Zealand: systematics and variation in the genus Tegulorhynchia . J. R. Soc. N.Z. 10:223245.CrossRefGoogle Scholar
Lee, D. E. and Wilson, J. B. 1979. Cenozoic and Recent rhynchonellide brachiopods of New Zealand: systematics and variation of the genus Notosaria . J. R. Soc. N.Z. 9:437463.CrossRefGoogle Scholar
Levinton, J. S. and Simon, C. M. 1980. A critique of the punctuated equilibria model and implications for the detection of speciation in the fossil record. Syst. Zool. 29:130142.CrossRefGoogle Scholar
Maynard Smith, J. 1981. Macroevolution. Nature. 289:1314.CrossRefGoogle Scholar
Mayr, E. 1963. Animal Species and Evolution. 797 pp. Harvard Univ. Press; Cambridge, Massachusetts.Google Scholar
McNamara, K. J. 1978. Paedomorphosis in Scottish olenellid trilobites (early Cambrian). Palaeontology. 21:635655.Google Scholar
McNamara, K. J. 1981. The role of paedomorphosis in the evolution of Cambrian trilobites. Pp. 126129. In: Taylor, M. E., ed. Short papers for the Second International Symposium on the Cambrian System 1981. U.S. Geol. Surv. Open-File Report 81–743.Google Scholar
McNamara, K. J. in press a. The earliest Tegulorhynchia (Brachiopoda: Rhynchonellida) and its evolutionary significance. J. Paleontol. 56.Google Scholar
McNamara, K. J. in press b. Taxonomy and evolution of living species of Breynia (Echinoidea: Spatangoida) from Australia. Rec. West. Aust. Mus. 10.Google Scholar
McNamara, K. J. and Philip, G. M. 1980a. Australian Tertiary schizasterid echinoids. Alcheringa. 4:4765.CrossRefGoogle Scholar
McNamara, K. J. and Philip, G. M. 1980b. Living Australian schizasterid echinoids. Proc. Linn. Soc. N.S.W. 104:127146.Google Scholar
Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution. 3:103124.CrossRefGoogle ScholarPubMed
Palmer, A. R. 1957. Ontogenetic development of two olenellid trilobites. J. Paleontol. 31:105128.Google Scholar
Percival, E. 1960. A contribution to the life-history of the brachiopod Tegulorhynchia nigricans . Q. J. Microsc. Sci. 439457.Google Scholar
Raup, D. M. and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Syst. Zool. 23:305322.CrossRefGoogle Scholar
Rensch, B. 1959. Evolution above the Species Level. 419 pp. Columbia Univ. Press; New York. (Translated from the German edition of 1954.)CrossRefGoogle Scholar
Richardson, J. R. 1979. Pedicle structure of articulate brachiopods. J. R. Soc. N.Z. 9:415436.CrossRefGoogle Scholar
Richardson, J. R. 1981. Brachiopods in mud: resolution of a dilemma. Science. 211:11611163.CrossRefGoogle ScholarPubMed
Rickards, R. B. 1977. Patterns of evolution in graptolites. Pp. 333358. In: Hallam, A., ed. Patterns of Evolution, as Illustrated by the Fossil Record. Elsevier; Amsterdam.CrossRefGoogle Scholar
Rudwick, M. J. S. 1962. Filter-feeding mechanisms in some brachiopods from New Zealand. Proc. Linn. Soc. London. 44:592615.Google Scholar
Schindewolf, O. 1936. Palaontologie, Entwicklungslehre und Genetik. 506 pp. Borntraeger; Berlin.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. 237 pp. Columbia Univ. Press; New York.Google Scholar
Singh-Pruthi, H. 1924. Studies on insect metamorphosis: 1, prothetely in mealworms (Tenebrio mollitar) and other insects: effects of different temperatures. Biol. Rev. 1:139147.CrossRefGoogle Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proc. Natl. Acad. Sci. U.S.A. 72:646650.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1979. Macroevolution—Pattern and Process. 332 pp. Freeman; San Francisco, Ca.Google Scholar
Stidd, B. M. 1980. The neotenous origin of the pollen organ of the gymnosperm Cycadeoidea and implications for the origin of higher taxa. Paleobiology. 6:161167.CrossRefGoogle Scholar
Travis, J. 1981. Control of larval growth variation in a population of Pseudacris triseriata (Anura: Hylidae). Evolution. 35:423432.CrossRefGoogle Scholar
Valentine, J. W. and Campbell, C. A. 1975. Genetic regulation and the fossil record. Am. Sci. 63:673680.Google ScholarPubMed
Van Valen, L. 1974. A natural model for the origin of some higher taxa. J. Herpetol. 8:109121.CrossRefGoogle Scholar
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? S.A. J. Sci. 76:6184.Google Scholar
Waddington, C. H. 1962. New Patterns in Genetics and Development. 271 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Wigglesworth, V. B. 1954. The Physiology of Insect Metamorphosis. 152 pp. Cambridge Univ. Press; Cambridge.Google Scholar
Wright, C. W. and Kennedy, W. J. 1980. Origin, evolution and systematics of the dwarf acanthoceratid Protacanthoceras Spath, 1923 (Cretaceous Ammonoidea). Bull. Brit. Mus. Nat. Hist. Geol. 34:65107.Google Scholar
Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. Sixth Internat. Congr. Genetics. 356366.Google Scholar
Wright, S. 1956. Modes of selection. Am. Nat. 90:524.CrossRefGoogle Scholar
Wright, S. 1967. Comments on the preliminary working papers of Eden and Waddington. Pp. 117120. In: Moorhead, P. S. and Kaplan, M. M., eds. Mathematical Challenges to the Neo-Darwinian Interpretation of Evolution. Wistar Institute Press; Philadelphia.Google Scholar
Zuckerkandl, E. 1968. Hemoglobins, Haeckel's “Biogenetic Law”, and molecular aspects of development. Pp. 256274. In: Rich, A. and Davidson, N., eds. Structural Chemistry and Molecular Biology. W. H. Freeman; San Francisco, Ca.Google Scholar
Zuckerkandl, E. 1976. Programs of gene action and progressive evolution. Pp 387447. In: Goodman, M. and Tashian, R. E., eds. Molecular Anthropology—Genes and Proteins in the Evolutionary Ascent of the Primates. Plenum Press; New York.Google Scholar
106
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Heterochrony and Phylogenetic Trends
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Heterochrony and Phylogenetic Trends
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Heterochrony and Phylogenetic Trends
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *