Skip to main content Accessibility help
×
Home

Article contents

Evolution of dental wear and diet during the origin of whales

Published online by Cambridge University Press:  08 April 2016

J. G. M. Thewissen
Affiliation:
Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272. E-mail: thewisse@neoucom.edu
Jennifer D. Sensor
Affiliation:
Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272
Mark T. Clementz
Affiliation:
Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071. E-mail: mclemen1@uwyo.edu
Sunil Bajpai
Affiliation:
Department of Earth Sciences, Indian Institute of Technology, Roorkee 247 667, India. E-mail: sunilbajpai2001@yahoo.com

Abstract

Dental morphology changes dramatically across the artiodactyl-cetacean transition, and it is generally assumed that this reflects the evolutionary change from herbivory and omnivory to carnivory. To test hypotheses regarding tooth function and diet, we studied size and position of wear facets on the lower molars and the stable isotopes of enamel samples. We found that nearly all investigated Eocene cetaceans had dental wear different from typical wear in ungulates and isotope values indicating that they hunted similar prey and processed it similarly. The only exception is the protocetid Babiacetus, which probably ate larger prey with harder skeletons. The closest relative of cetaceans, the raoellid artiodactyl Indohyus, had wear facets that resemble those of Eocene cetaceans more than they do facets of basal artiodactyls. This is in spite of Indohyus's tooth crown morphology, which is unlike that of cetaceans, and its herbivorous diet, as indicated by stable isotopes. This implies that the evolution of masticatory function preceded that of crown morphology and diet at the origin of cetaceans.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.

References

Ambrose, S. H., and Norr, L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. Pp. 137in Lambert, J. B. and Grupe, G., eds. Prehistoric human bone: archaeology at the molecular level. Springer, New York.Google Scholar
Bajpai, S., and Thewissen, J. G. M. 1998. Middle Eocene cetaceans from the Harudi and Subathu Formations of India. Pp. 213234in Thewissen, 1998.Google Scholar
Bock, W. J., and von Wahlert, G. 1965. Adaptation and the form-function complex. Evolution 19:269299.CrossRefGoogle Scholar
Bryant, H. N., and Russell, A. P. 1995. Carnassial functioning in nimravid and felid sabertooths: theoretical basis and robustness of inferences. Pp. 116135in Thomason, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, New York.Google Scholar
Butler, P. M. 1952. The milk-molars of Perissodactyla, with remarks on molar occlusion. Proceedings of the Zoological Society, London 121:777817.CrossRefGoogle Scholar
Butler, P. M. 1973. Molar wear facets of early Tertiary North American primates. Pp. 127in Zingeser, M. R., ed. Symposia of the fourth international congress of primatology, Vol. 3. Craniofacial biology of primates. Karger, Basel.Google Scholar
Clementz, M. T., and Koch, P. L. 2001. Monitoring habitat and foraging ecology in aquatic mammal with stable isotopes in the tooth enamel. Oecologia 129:461472.CrossRefGoogle Scholar
Clementz, M. T., Goswami, A., Gingerich, P. D., and Koch, P. L. 2006. Isotopic records from early whales and sea cows: contrasting patterns of ecological transition. Journal of Vertebrate Paleontology 26:355370.CrossRefGoogle Scholar
Clementz, M. T., Holroyd, P. A., and Koch, P. L. 2008. Identifying aquatic habits of herbivorous mammals through stable isotope analysis. Palaios 23:574585.CrossRefGoogle Scholar
Cooper, L. N., Thewissen, J. G. M., and Hussain, S. T. 2009. New middle Eocene archaeocetes (Cetacea: Mammalia) from the Kuldana Formation of northern Pakistan. Journal of Vertebrate Paleontology 29:12891299.CrossRefGoogle Scholar
Crompton, A. W., and Hiiemae, K. M. 1970. Molar occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis. Zoological Journal of the Linnean Society 49:2147.CrossRefGoogle Scholar
Duggins, D. O., Simenstad, C. A., and Estes, J. A. 1989. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170173.CrossRefGoogle ScholarPubMed
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40:503537.CrossRefGoogle Scholar
Foote, A. D., Newton, J., Piertney, S. B., Willerslev, E., and Gilbert, M. T. P. 2009. Ecological, morphological and genetic divergence of sympatric North Atlantic killer whale populations. Molecular Ecology 18:52075217.CrossRefGoogle ScholarPubMed
Gatesy, J. 1998. Molecular evidence for the phylogenetic affinities of Cetacea. Pp. 63112in Thewissen, 1998.Google Scholar
Geisler, J. H., and Theodor, J. M. 2009. Hippopotamus and whale phylogeny. Nature 458:E1E4.CrossRefGoogle ScholarPubMed
Geisler, J. H., and Uhen, M. D. 2003. Morphological support for a close relationship between hippos and whales. Journal of Vertebrate Paleontology 23:991996.CrossRefGoogle Scholar
Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. 1983. Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403406.CrossRefGoogle ScholarPubMed
Gingerich, P. D., ul-Haq, M., Zalmout, I. S., Khan, I. H., and Malkani, M. S. 2001. Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293:22392242.CrossRefGoogle ScholarPubMed
Gingerich, P. D., ul-Haq, M., von Koenigswald, W., Sanders, W. J., Smith, B. H., and Zalmout, I. S. 2009. New protocetid whale from the middle Eocene of Pakistan: birth on land, precocial development, and sexual dimorphism. PLoS ONE 4(2):e4366. doi:10.1371/journal.pone.0004366CrossRefGoogle Scholar
Hemminga, M. A., and Mateo, M. A. 1996. Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Marine Ecology Progress Series 140:285298.CrossRefGoogle Scholar
Hunter, J. P., and Fortelius, M. 1994. Comparative dental occlusal morphology, facet development, and microwear in two sympatric species of Listriodon (Mammalia: Suidae) from the middle Miocene of western Anatolia (Turkey). Journal of Vertebrate Paleontology 14:105126.CrossRefGoogle Scholar
Janis, C. M. 1979. Mastication in the hyrax and its relevance to ungulate dental evolution. Paleobiology 5:5059.CrossRefGoogle Scholar
Kay, R. F., and Hiiemae, K. M. 1974. Mastication in Galago crassicaudatus: a cinefluorographic and occlusal study. Pp. 501530in Martin, R. D., Doyle, G. A., and Walker, A. C., eds. Prosimian biology. Duckworth, London.Google Scholar
Koch, P. L. 1998. Isotopic Reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26:573613.CrossRefGoogle Scholar
Koch, P. L., Tuross, N., and Fogel, M. L. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24:417429.CrossRefGoogle Scholar
Kohn, M. J., and Cerling, T. E. 2002. Stable isotope compositions of biological apatite. In Kohn, M. J., Rakovan, J., and Hughes, J., eds. Phosphates: geochemical, geobiological, and materials importance. Reviews in Mineralogy and Geochemistry 48:455488. Mineralogical Society of America, Washington, D.C.Google Scholar
Maas, M. C., and Thewissen, J. G. M. 1995. Enamel microstructure of Pakicetus (Mammalia: Archaeoceti). Journal of Paleontology 69:11541163.CrossRefGoogle Scholar
Massare, J. A. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology 7:121137.CrossRefGoogle Scholar
Meijaard, E., Umilaela, G. de Silva Wijeyeratne 2009. Aquatic escape behavior in mouse-deer provides insight into tragulid evolution. Mammalian Biology 75:471475.CrossRefGoogle Scholar
Milinkovitch, M. C., Bérubé, M., and Palsb⊘ll, P. J. 1998. Cetaceans are highly derived artiodactyls. Pp. 113132in Thewissen, 1998.Google Scholar
O'Leary, M. H. 1988. Carbon isotopes in photosynthesis. Bioscience 38:328336.CrossRefGoogle Scholar
O'Leary, M. A. 1998. Phylogenetic and morphometric reassessment of the dental evidence for a mesonychian and cetacean clade. Pp. 133162in Thewissen, 1998.Google Scholar
O'Leary, M. A., and Geisler, J. H. 1999. The position of Cetacea within Mammalia: Phylogenetic analysis of morphological data from extinct and extant taxa. Systematic Biology 48:455490.CrossRefGoogle ScholarPubMed
O'Leary, M. A., and Uhen, M. D. 1999. The time of origin of whales and the role of behavioral changes in the terrestrial-aquatic transition. Paleobiology 25:534556.CrossRefGoogle Scholar
Osmond, C. B., Valaane, N., Haslam, S. M., Uotila, P., and Roksandic, Z. 1981. Comparisons of 613C values in leaves of aquatic macrophytes from different habitats in Britain and Finland; some implications for photosynthetic processes in aquatic plants. Oecologia 50:117124.CrossRefGoogle Scholar
Passey, B. H., and Cerling, T. E. 2002. Tooth enamal mineralization in ungulates: implications for recovering a primary isotopic time series. Geochimica Cosmochimica Acta 66:32253234.CrossRefGoogle Scholar
Raven, J. A., Johnston, A. M., Kübler, J. E., Korb, R. E., McInroy, S. G., Handley, L. L., Scrimgeour, C. M., Walker, D. I., Beardall, J., Vanderklift, M., Fredriksen, S., and Dunton, K. H. 2002. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Functional Plant Biology 29:355378.CrossRefGoogle Scholar
Rensberger, J. M. 1986. Early chewing mechanisms in mammalian herbivores. Paleobiology 12:474494.CrossRefGoogle Scholar
Rensberger, J. M. 2004. Evidence from the enamel microstructure for reversals in dietary behavior in the transition from primitive Ceratomorpha to Rhinocerotoidea. Bulletin of the Carnegie Museum of Natural History 36:199201.CrossRefGoogle Scholar
Richter, G. 1981. Untersuchungen zur Ernährung von Messelobunodon schaeferi (Mammalia, Artiodactyla). Senckenbergiana Lethaea 61:355370.Google Scholar
Richter, G. 1987. Untersuchungen zur Ernährung eozäner Säuger aus der Fossilfundstätte Messel by Darmstadt. Pp. 133in Schaal, S., ed. Forschungsergebnisse zu Grabungen in der Grube Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg 91:133.Google Scholar
Roe, L. J., Thewissen, J. G. M., Quade, J., O'Neil, J. R., Bajpai, S., Sahni, A., and Hussain, S. T. 1998. Isotopic approaches to understanding the terrestrial to marine transition of the earliest cetaceans. Pp. 399422in Thewissen, 1998.Google Scholar
Sahni, A. 1987. Evolutionary aspects of reptilian and mammalian enamel structure. Scanning Microscopy 1:19031929.Google ScholarPubMed
Schubert, B. W., and Ungar, P. S. 2005. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontologica Polonica 50:9399.Google Scholar
Shimamura, M., Abe, H., Nikaido, M., and Okada, N. 1999. Genealogy of families of SINEs in cetaceans and artiodactyls: the presence of a huge superfamily of tRNA (Glu)-derived families of SINEs. Molecular Biology and Evolution 16:10461060.CrossRefGoogle ScholarPubMed
Spaulding, M., O'Leary, M. A., Gatesy, J. 2009. Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS ONE 4(9):e7062. doi:10.1371/journal.pone.0007062CrossRefGoogle ScholarPubMed
Szalay, F. S., and Gould, S. J. 1966. Asiatic Mesonychidae (Mammalia, Condylarthra). American Museum of Natural History, Bulletin 132:127174.Google Scholar
Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. Journal of Mammalian Evolution 2:157184.CrossRefGoogle Scholar
Thewissen, J. G. M., ed. 1998. The emergence of whales: evolutionary patterns in the origin of Cetacea. Plenum, New York.CrossRefGoogle Scholar
Thewissen, J. G. M., and Bajpai, S. 2009. New skeletal material of Andrewsiphius and Kutchicetus, two Eocene cetaceans from India. Journal of Paleontology 83:635663.CrossRefGoogle Scholar
Thewissen, J. G. M., and McLellan, W. A. 2009. Maiacetus: displaced fetus or last meal? Comment on: Gingerich, P. D., ul-Haq, M., von Koenigswald, W., Sanders, W. J., Smith, B. H., and Zalmout, I. S.New protocetid whale from the middle Eocene of Pakistan: birth on land, precocial development, and sexual dimorphism. PLoS ONE 4(2):e4366. doi:10.1371/journal.pone.0004366Google Scholar
Thewissen, J. G. M., Williams, E. M., Roe, L. J., and Hussain, S. T. 2001. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413:277281.CrossRefGoogle ScholarPubMed
Thewissen, J. G. M., Cooper, L. N., Clementz, M. T., Bajpai, S., and Tiwari, B. N. 2007. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:11901195.CrossRefGoogle Scholar
Tieszen, L. L., and Fagre, T. 1993. Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. Pp. 121155in Lambert, J. B. and Grupe, G., eds. Prehistoric human bone: archaeology at the molecular level. Springer, New York.CrossRefGoogle Scholar
Uhen, M. D. 2000. Replacement of deciduous first premolars and dental eruption in archaeocete whales. Journal of Mammalogy 81:123133.2.0.CO;2>CrossRefGoogle Scholar
Ungar, P. S., and M'Kirera, F. 2003. A solution to the worn tooth conundrum in primate functional anatomy. Proceedings of the National Academy of Sciences USA 100:38743877. www.pnas.org/cgi/doi/10.1073.pnas.0637016100.CrossRefGoogle ScholarPubMed
West, R. M. 1981. Geology and paleontology of the Bridger Formation, southern Green River Basin, southwestern Wyoming, Part 5. Harpagolestes macrocephalus and comments on structure, function, and diversity of middle Eocene to early Oligocene large mesonychids. Contributions in Biology and Geology, Milwaukee Public Museum 43:117.Google Scholar
Williams, S. H., Vinyard, C. J., Wall, C. E., and Hylander, W. L. 2007. Masticatory motor patterns in ungulates: a quantitative assessment of jaw-muscle coordination in goats, alpacas and horses. Journal of Experimental Zoology A 307:226240.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 16 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-cdnjt Total loading time: 0.339 Render date: 2021-01-16T17:28:06.178Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Jan 16 2021 16:53:00 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evolution of dental wear and diet during the origin of whales
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Evolution of dental wear and diet during the origin of whales
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Evolution of dental wear and diet during the origin of whales
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *