Hostname: page-component-cc8bf7c57-7lvjp Total loading time: 0 Render date: 2024-12-11T17:21:31.122Z Has data issue: false hasContentIssue false

Deep-water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina Basin

Published online by Cambridge University Press:  08 February 2016

Peter A. Allison
Affiliation:
Postgraduate Research Institute for Sedimentology, The University, P.O. Box 227, White-knights, Reading RG6 2AB, England
Craig R. Smith
Affiliation:
School of Oceanography and Earth Science and Technology, 1000 Pope Road, University of Hawaii, Honolulu, Hawaii 96822
Helmut Kukert
Affiliation:
School of Oceanography and Earth Science and Technology, 1000 Pope Road, University of Hawaii, Honolulu, Hawaii 96822
Jody W. Deming
Affiliation:
School of Oceanography, University of Washington, Seattle, Washington 98195
Bruce A. Bennett
Affiliation:
School of Oceanography, University of Washington, Seattle, Washington 98195

Abstract

Taphonomic processes in deep-water environments differ markedly from those in shallow waters. These differences are illustrated by the preservational style of a large cetacean skeleton lying at the bottom of the Santa Catalina Basin in 1,240 m of water. The degree of skeletal articulation contrasts with that documented in the shallow North Sea where gas-filled, buoyant carcasses disarticulated during flotation. Increased hydrostatic pressure at greater depth is presumed to have prevented the whale carcass from floating and promoted increased levels of preservation. We present a model that relates gas evolution during decay to carcass buoyancy with depth. Application of this model may ultimately allow the degree of skeletal articulation to be used as a rough index of paleobathymetry.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aller, R. C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. Pp. 53104. In McCall, P. L., and Tevesz, M.J.S. (eds.), Animal-Sediment Relations. Plenum Press; New York.CrossRefGoogle Scholar
Allison, P. A. 1988a. The decay and mineralization of proteinaceous macrofossils. Paleobiology 14:139154.CrossRefGoogle Scholar
Allison, P. A. 1988b. Konservat-Lagerstätten: cause and classification. Paleobiology 14:331344.CrossRefGoogle Scholar
Altman, P. L., and Dittmer, D. S. 1972. Biology Data Book. Second Edition. Vol. 1. Federation of American Societies for Experimental Biology.Google Scholar
Archer, D., Emerson, S., and Smith, C. R. 1989. Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes. Nature 340:623626.CrossRefGoogle Scholar
Behrensmeyer, A. K. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology 4:150162.CrossRefGoogle Scholar
Berner, R. A. 1970. Sedimentary pyrite formation. American Journal of Science 268:123.CrossRefGoogle Scholar
Berner, R. A. 1981. Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortschritte der Mineralogie 59:117135.Google Scholar
Berner, R. A. 1984. Sedimentary pyrite, an update. Geochimica et Cosmochimica Acta 48:605615.CrossRefGoogle Scholar
Brett, C. E., and Baird, G. C. 1986. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaois 1:207227.CrossRefGoogle Scholar
Callender, W. R., Staff, G. M., Powell, E. N., and Mac-Donald, I. R. 1990. Gulf of Mexico hydrocarbon seep communities. V. Biofacies and shell orientation of autochthonous shell beds below storm wave base. Palaois 5:214.CrossRefGoogle Scholar
Carthew, R., and Bosence, D. 1986. Community preservation in recent shell gravels, English Channel. Palaeontology 29:243268.Google Scholar
Coleman, M. L. 1985. Geochemistry of diagenetic non-silicate minerals: kinetic considerations. Philosophical Transactions of the Royal Society of London 315A:3954.Google Scholar
Emery, K. O. 1960. The Sea off Southern California. Wiley; New York.Google Scholar
Ennever, J., Streckfuss, J. L., and Goldschmidt, M. C. 1981. Calcifiability comparison among selected micro-organisms. Journal of Dental Research 60:17931796.CrossRefGoogle Scholar
Ferris, F. G., Fyfe, W. S., and Beverbridge, T. J. 1988. Metallic ion binding by Bacillus subtilus: implications for the fossilization of micro-organisms. Geology 16:149152.2.3.CO;2>CrossRefGoogle Scholar
Fleischer, P. 1970. Mineralogy and sedimentation history, Santa Barbara Basin, California. Journal of Sedimentary Petrology 42:4958.Google Scholar
Gibbs, P. E. 1987. A new species of Phascolosoma (Sipuncula) associated with a decaying whale's skull trawled at 880 m depth in the South-west Pacific. New Zealand Journal of Zoology 4:135137.CrossRefGoogle Scholar
Gorsline, D. S., and Prensky, S. E. 1975. Paleoclimatic inferences for the late Pleistocene and Holocene from California continental borderland basin sediments. Pp. 147154. In Suggate, R., and Cresswell, M. (eds.), Quaternary Studies. Royal Society of New Zealand; Auckland.Google Scholar
Haszprunar, G. 1988. Anatomy and relationships of the bone-feeding limpets, Cocculinella minutissima (Smith) and Osteopelta mirabilis Marshall (Archaeogastropoda). Journal of Molluscan Studies 54:120.CrossRefGoogle Scholar
Lockyer, C. 1976. Growth and energy budgets of large baleen from the southern hemisphere. FAO of UN Scientific Consultation on Marine Mammals, document ACMRR/MM/SC/41.Google Scholar
Martill, D. M. 1986. The stratigraphic distribution and preservation of fossil vertebrates in the Oxford Clay of England. Mercian Geologist 10:161188.Google Scholar
Martill, D. M. 1987. A taphonomic and diagenetic case study of a partially articulated ichthyosaur. Palaeontology 30:543556.Google Scholar
Nelson, D. C., Wirsen, C. O., and Jannasch, H. W. 1989. Characterization of large autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Applied and Environmental Microbiology 55:29092917.CrossRefGoogle ScholarPubMed
Norris, R. D. 1986. Taphonomic gradients in shelf fossil assemblages: Pliocene Purisma Formation, California. Palaios 1:256270.CrossRefGoogle Scholar
Plotnick, R. E. 1986. Taphonomy of a modern shrimp: implications for the arthropod fossil record. Palaois 1:294302.CrossRefGoogle Scholar
Pryor, W. A. 1975. Biogenic sedimentation and alteration in shallow marine environments. Bulletin of the Geological Society of America 86:12441254.2.0.CO;2>CrossRefGoogle Scholar
Rhoads, D. C., and Boyer, L. F. 1982. The effects of marine benthos on physical properties of sediments: a successional perspective. Pp. 352. In McCall, P. L., and Tevesz, M.J.S. (eds.), Animal-Sediment Relations. Plenum Press; New York.CrossRefGoogle Scholar
Rhoads, D. C., and Morse, J. W. 1971. Evolutionary and ecological significance of oxygen-deficient marine basins. Lethaia 4:413428.CrossRefGoogle Scholar
Savrda, C. E., Bottjer, D. J., and Gorsline, D. S. 1984. Development of a comprehensive oxygen-deficient marine biofacies model: evidence from Santa Monica, San Pedro, and Santa Barbara basins, California continental borderland. Bulletin of the American Association of Petroleum Geologists 68:11791192.Google Scholar
Schäfer, W. 1962. Aktuo-paläontologie nach Studien in der Nordsee. Kramer; Frankfurt, Germany.Google Scholar
Schäfer, W. 1972. Ecology and Paleoecology of Marine Environments. University of Chicago Press; Chicago.Google Scholar
Schwalbach, J. R., and Gorsline, D. S. 1985. Holocene sediment budgets for the basins of the California continental borderland. Journal of Sedimentary Petrology 55:829842.Google Scholar
Seilacher, A., Reif, W.-E., and Westphal, F. 1985. Sedimentological, ecological and temporal patterns of Fossil-Lagerstätten. Philosophical Transactions of the Royal Society of London 311B:523.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Slijper, E. J. 1962. Whales. Hutchinson and Company; London.Google Scholar
Smith, C. R. 1985. Food for the deep sea: utilization, dispersal, and flux of nekton falls at the Santa Catalina Basin floor. Deep-Sea Research 32:417442.CrossRefGoogle Scholar
Smith, C. R., and Hamilton, S. C. 1983. Epibenthic megafauna of a bathyal basin off southern California: patterns of abundance, biomass, and dispersion. Deep-Sea Research 30:907928.CrossRefGoogle Scholar
Smith, C. R., Jumars, P. A., and Demaster, D. J. 1986. In situ studies of megafaunal mounds indicate rapid sediment turnover and community response at the deep-sea floor. Nature 323:251253.CrossRefGoogle Scholar
Smith, C. R., Kukert, H., Wheatcroft, R. A., Jumars, P. A., and Deming, J. W. 1989. Vent-fauna on whale remains. Nature 326:2728.CrossRefGoogle Scholar
Smith, K. L. Jr., Laver, M. B., and Brown, N. O. 1983. Sediment community oxygen and nutrient exchange in the central and eastern North Pacific. Limnology and Oceanography 28:882898.CrossRefGoogle Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625. In Tevesz, M.J.S., and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Communities. Plenum Press; New York.CrossRefGoogle Scholar
T⊘nnessen, J. N., and Johnsen, A. O. 1982. The History of Modern Whaling. C. Hurst and Company; London.Google Scholar
Van Cappellen, P., and Berner, R. A. 1988. A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments: apatite precipitation. American Journal of Science 288:289333.CrossRefGoogle Scholar
Wüttke, M. 1983. Weichteil-Erhaltung durch lithifizierte Microoganismen bei mittel eozänen Vertebraten aus den Ölschiefern der Grube Messel bei Darmstadt. Senckenbergiana Lethaea 64:509527.Google Scholar