Skip to main content Accessibility help

Partitioning the plant diversity of semi-natural grasslands across Japan

  • Asuka Koyama (a1), Tomoyo F. Koyanagi (a2), Munemitsu Akasaka (a3), Yoshinobu Kusumoto (a4), Syuntaro Hiradate (a4), Masayuki Takada (a5) and Kimiko Okabe (a1)...


Effective conservation of global species diversity requires a clear understanding of spatial scales that support overall diversity across broad scales. Abandonment of semi-natural grasslands has increased their fragmentation and decreased their areal extent. We quantified diversity patterns of plant communities in Japan across hierarchical scales to facilitate the development of an effective nationwide strategy for conserving species diversity in remnant semi-natural grasslands. We applied additive partitioning of plant species diversity, using a nested hierarchical design at three spatial scales (quadrat, grassland, and western and eastern regions of Japan) for three groups of plant species (all species, grassland species and national Red Listed species). We consistently found lower proportions of among-quadrats diversity, and higher proportions of among-grasslands diversity and between-regions diversity in the overall diversity of the entire species complement than would be expected by chance. The high contribution of among-grasslands diversity to overall diversity suggests that each grassland had a unique species content. The second-ranking contributor to overall diversity differed between grassland species and Red Listed species: the second-ranking contributor for grassland species was diversity at the among-quadrats scale but the second-ranking contributor for all species and for Red Listed species was diversity at the between-regions scale. Thus, effective conservation of diversity of the entire species complement in remnant semi-natural grasslands requires preservation of beta diversity in individual grasslands. Our findings highlight the importance of strengthening local preservation and restoration activities within each grassland, and of nationwide strategies for conserving Red Listed species in remnant semi-natural grassland communities.


Corresponding author

(Corresponding author) E-mail


Hide All

Supplementary material for this article can be found at



Hide All
Allan, J.D. (1975) Components of diversity. Oecologia, 18, 359367.
Apostolopoulou, E. & Adams, W.M. (2017) Biodiversity offsetting and conservation: reframing nature to save it. Oryx, 51, 2331.
Auestad, I., Rydgren, K. & Økland, R.H. (2008) Scale-dependence of vegetation–environment relationships in semi-natural grasslands. Journal of Vegetation Science, 19, 139148.
Bacaro, G., Altobelli, A., Cameletti, M., Ciccarelli, D., Martellos, S., Palmer, M.W. et al. (2016) Incorporating spatial autocorrelation in rarefaction methods: implications for ecologists and conservation biologists. Ecological Indicators, 69, 233238.
Bacaro, G., Maccherini, S., Chiarucci, A., Jentsch, A., Rocchini, D., Torri, D. et al. (2015) Distributional patterns of endemic, native and alien species along a roadside elevation gradient in Tenerife, Canary Islands. Community Ecology, 16, 223234.
Bennie, J., Hill, M.O., Baxter, R. & Huntley, B. (2006) Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology, 94, 355368.
Chandy, S., Gibson, D.J. & Robertson, P.A. (2006) Additive partitioning of diversity across hierarchical spatial scales in a forested landscape. Journal of Applied Ecology, 43, 792801.
Chiarucci, A., Bacaro, G., Filibeck, G., Landi, S., Maccherini, S. & Scoppola, A. (2012) Scale dependence of plant species richness in a network of protected areas. Biodiversity and Conservation, 21, 503516.
Chiarucci, A., Bacaro, G., Rocchini, D. & Fattorini, L. (2008) Discovering and rediscovering the sample-based rarefaction formula in the ecological literature. Community Ecology, 9, 121123.
Chiarucci, A., Bacaro, G., Rocchini, D., Ricotta, C., Palmer, M. & Scheiner, S. (2009) Spatially constrained rarefaction: incorporating the autocorrelated structure of biological communities into sample-based rarefaction. Community Ecology, 10, 209214.
Coetzee, B.W.T., Gaston, K.J. & Chown, S.L. (2014) Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS ONE, 9(8), e105824.
Crist, T.O., Veech, J.A., Gering, J.C. & Summerville, K.S. (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. The American Naturalist, 162, 734743.
Flohre, A., Fischer, C., Aavik, T., Bengtsson, J., Berendse, F., Bommarco, R. et al. (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecological Applications, 21, 17721781.
Gabriel, D., Roschewitz, I., Tscharntke, T. & Thies, C. (2006) Beta diversity at different spatial scales: plant communities in organic and conventional agriculture. Ecological Applications, 16, 20112021.
Gaston, K.J. & Fuller, R.A. (2009) The sizes of species’ geographic ranges. Journal of Applied Ecology, 46, 19.
Gering, J.C., Crist, T.O. & Veech, J.A. (2003) Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conservation Biology, 17, 488499.
Gibson, D.J., Seastedt, T.R. & Briggs, J.M. (1993) Management practices in tallgrass prairie: large- and small-scale experimental effects on species composition. Journal of Applied Ecology, 30, 247255.
Grman, E., Bassett, T. & Brudvig, L.A. (2013) Confronting contingency in restoration: management and site history determine outcomes of assembling prairies, but site characteristics and landscape context have little effect. Journal of Applied Ecology, 50, 12341243.
Groves, C.R., Jensen, D.B., Valutis, L.L., Redford, K.H., Shaffer, M.L., Scott, J.M. et al. (2002) Planning for biodiversity conservation: putting conservation science into practice. BioScience, 52, 499512.
Hansson, M. & Fogelfors, H. (2000) Management of a semi-natural grassland; results from a 15-year-old experiment in southern Sweden. Journal of Vegetation Science, 11, 3138.
Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology, 88, 24272439.
Jost, L., DeVries, P., Walla, T., Greeney, H., Chao, A. & Ricotta, C. (2010) Partitioning diversity for conservation analyses. Diversity and Distributions, 16, 6576.
Kahmen, A., Perner, J., Audorff, V., Weisser, W. & Buchmann, N. (2005) Effects of plant diversity, community composition and environmental parameters on productivity in montane European grasslands. Oecologia, 142, 606615.
Kahmen, S., Poschlod, P. & Schreiber, K.F. (2002) Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biological Conservation, 104, 319328.
Katayama, N., Amano, T., Naoe, S., Yamakita, T., Komatsu, I., Takagawa, S.I. et al. (2014) Landscape heterogeneity–biodiversity relationship: effect of range size. PLoS ONE, 9(3), e93359.
Kiesecker, J.M., Copeland, H., Pocewicz, A. & McKenney, B. (2010) Development by design: blending landscape-level planning with the mitigation hierarchy. Frontiers in Ecology and the Environment, 8, 261266.
Kiesecker, J.M., Copeland, H., Pocewicz, A., Nibbelink, N., McKenney, B., Dahlke, J. et al. (2009) A framework for implementing biodiversity offsets: selecting sites and determining scale. BioScience, 59, 7784.
Kobayashi, S. (1973) The species–area relation. I. A model for discrete sampling. Researches on Population Ecology, 15, 223237.
Koyanagi, T.F. & Furukawa, T. (2013) Nation-wide agrarian depopulation threatens semi-natural grassland species in Japan: sub-national application of the Red List Index. Biological Conservation, 167, 18.
Koyanagi, T., Kusumoto, Y., Hiradate, S., Morita, S., Yokogawa, M., Takahashi, Y. & Sato, C. (2013) New method for extracting plant indicators based on their adaptive responses to management practices: application to semi-natural and artificial grassland data. Applied Vegetation Science, 16, 95109.
Lande, R. (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76, 513.
Lennon, J.J., Beale, C.M., Reid, C.L., Kent, M. & Pakeman, R.J. (2011) Are richness patterns of common and rare species equally well explained by environmental variables? Ecography, 34, 529539.
Luoto, M., Virkkala, R. & Heikkinen, R.K. (2007) The role of land cover in bioclimatic models depends on spatial resolution. Global Ecology and Biogeography, 16, 3442.
MacDougall, A.S. & Turkington, R. (2007) Does the type of disturbance matter when restoring disturbance-dependent grasslands? Restoration Ecology, 15, 263272.
Maekawa, F. (1949) Makinoesia and its bearing to Oriental Asiatic flora. The Journal of Japanese Botany, 24, 9196.
Marini, L., Scotton, M., Klimek, S., Isselstein, J. & Pecile, A. (2007) Effects of local factors on plant species richness and composition of Alpine meadows. Agriculture, Ecosystems & Environment, 119, 281288.
Martin, L.M., Moloney, K.A. & Wilsey, B.J. (2005) An assessment of grassland restoration success using species diversity components. Journal of Applied Ecology, 42, 327336.
Ministry of The Environment, Government of Japan (2012) The 4th Version of the Japanese Red Lists on 9 Taxonomic Groups. Ministry of the Environment Government of Japan, Tokyo. [In Japanese]
Müller, J. & Goßner, M.M. (2010) Three-dimensional partitioning of diversity informs state-wide strategies for the conservation of saproxylic beetles. Biological Conservation, 143, 625633.
Myklestad, Å. & Sætersdal, M. (2004) The importance of traditional meadow management techniques for conservation of vascular plant species richness in Norway. Biological Conservation, 118, 133139.
Nagata, Y.K. & Ushimaru, A. (2016) Traditional burning and mowing practices support high grassland plant diversity by providing intermediate levels of vegetation height and soil pH. Applied Vegetation Science, 19, 567577.
Ogura, J. (2006) The transition of grassland area in Japan. Journal of Kyoto Seika University, 30, 160172. [In Japanese]
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B. et al. (2016) Vegan: Community Ecology Package, R Package Version 2.3–5. Http://
Palmer, M.W. (1990) The estimation of species richness by extrapolation. Ecology, 71, 11951198.
Pouzols, M.F., Toivonen, T., Di Minin, E., Kukkala, A.S., Kullberg, P., Kuusterä, J. et al. (2014) Global protected area expansion is compromised by projected land-use and parochialism. Nature, 516, 383386.
Pykälä, J., Luoto, M., Heikkinen, R.K. & Kontula, T. (2005) Plant species richness and persistence of rare plants in abandoned semi-natural grasslands in northern Europe. Basic and Applied Ecology, 6, 2533.
Sasaki, T., Katabuchi, M., Kamiyama, C., Shimazaki, M., Nakashizuka, T. & Hikosaka, K. (2012) Diversity partitioning of moorland plant communities across hierarchical spatial scales. Biodiversity and Conservation, 21, 15771588.
Schmera, D. & Podani, J. (2013) Components of beta diversity in hierarchical sampling designs: a new approach. Ecological Indicators, 26, 126136.
Summerville, K.S., Boulware, M.J., Veech, J.A. & Crist, T.O. (2003) Spatial variation in species diversity and composition of forest Lepidoptera in eastern deciduous forests of North America. Conservation Biology, 17, 10451057.
Takahashi, Y. (2004) Vegetation management for conservation and restoration of semi-natural grassland. Grassland Science, 50, 99106.
The Plant List (2013) Http:// [accessed 5 February 2016].
Uchida, K. & Ushimaru, A. (2015) Land abandonment and intensification diminish spatial and temporal β-diversity of grassland plants and herbivorous insects within paddy terraces. Journal of Applied Ecology, 52, 10331043.
Valkó, O., Török, P., Deák, B. & Tóthmérész, B. (2014) Review: prospects and limitations of prescribed burning as a management tool in European grasslands. Basic and Applied Ecology, 15, 2633.
Veech, J.A., Summerville, K.S., Crist, T.O. & Gering, J.C. (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos, 99, 39.
Vellak, A.I.N., Tuvi, E.L., Reier, Ü., Kalamees, R., Roosaluste, E., Zobel, M. & Pärtel, M. (2009) Past and present effectiveness of protected areas for conservation of naturally and anthropogenically rare plant species. Conservation Biology, 23, 750757.
Wagner, H.H., Wildi, O. & Ewald, K.C. (2000) Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landscape Ecology, 15, 219227.
Watson, J.E.M., Evans, M.C., Carwardine, J., Fuller, R.A., Joseph, L.N. & Segan, D.B. et al. (2011) The capacity of Australia's protected-area system to represent threatened species. Conservation Biology, 25, 324332.
Yamato, M., Ema, K. & Takeda, Y. (2013) Relationships between species richness, species composition and area of fragmented semi-natural grasslands in central Kinki District. Vegetation Science, 30, 119126.
Yamaura, Y., Ikeno, S., Sano, M., Okabe, K. & Ozaki, K. (2009) Bird responses to broad-leaved forest patch area in a plantation landscape across seasons. Biological Conservation, 142, 21552165.
YList (2003) Http:// [accessed 5 February 2016].


Type Description Title
Supplementary materials

Koyama supplementary material
Table S1

 PDF (378 KB)
378 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed