Skip to main content Accessibility help
×
Home

Modelling harvest of Asian elephants Elephas maximus on the basis of faulty assumptions promotes inappropriate management solutions

  • Jean Philippe Puyravaud (a1), Priya Davidar (a2), Rajeev K. Srivastava (a3) and Belinda Wright (a4)

Abstract

A ratio-based logistic model developed to assess elephant harvest rates, based on a study at Nagarhole Tiger Reserve in India, was recommended as a management tool to control human–elephant conflict through culling. Considering this reserve among others violates an assumption of the logistic model: isolation. Nevertheless, assuming this violation was irrelevant, we re-evaluated the model, with minor modifications, for the neighbouring Mudumalai Tiger Reserve, where we used data from 13 elephant Elephas maximus population surveys to derive bootstrapped sets of population ratios, and mortality records. We generated arrays of harvest regimes and examined which ratio outputs were closest to the bootstrapped ratios. Our results indicated that (1) model outputs corresponded best with the Mudumalai population structure when harvest regimes were extreme and unlikely, (2) there were significant differences in population structure and harvest regimes between Nagarhole and Mudumalai, and (3) only 49% of adult male deaths predicted by model outputs were recorded in official governmental records. The model provides significantly different results among reserves, which invalidates it as a tool to predict change across the entire elephant population. Variability in survey data and inaccuracies in transition probabilities are sufficiently large to warrant caution when using them as a basis for deterministic modelling. Official mortality databases provide a weak means of validation because poaching incidents are poorly recorded. We conclude that the model should be based on validated transition probabilities and encompass the entire regional population.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modelling harvest of Asian elephants Elephas maximus on the basis of faulty assumptions promotes inappropriate management solutions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modelling harvest of Asian elephants Elephas maximus on the basis of faulty assumptions promotes inappropriate management solutions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modelling harvest of Asian elephants Elephas maximus on the basis of faulty assumptions promotes inappropriate management solutions
      Available formats
      ×

Copyright

Corresponding author

(Corresponding author) E-mail jp.puyravaud@gmail.com

References

Hide All
Allendorf, F.W., England, P.R., Luikart, G., Ritchie, P.A. & Ryman, N. (2008) Genetic effects of harvest on wild animal populations. Trends in Ecology & Evolution, 23, 327337.
Arivazhagan, C. & Sukumar, R. (2008) Constructing age structures of Asian elephant populations: a comparison of two field methods of age estimation. Gajah, 29, 1116.
Ashokkumar, M., Nagarajan, R. & Desai, A.A. (2010) Group size and age–sex composition of Asian elephant and gaur in Mudumalai Tiger Reserve, southern India. Gajah, 32, 2734.
Baskaran, N. (2013) An overview of Asian elephants in the Western Ghats, southern India: implications for the conservation of Western Ghats ecology. Journal of Threatened Taxa, 5, 48544870.
Baskaran, N., Balasubramanian, M., Swaminathan, S. & Desai, A.A. (1993) Home range of elephants in the Nilgiri Biosphere Reserve, South India. In A Week With Elephants: Proceedings of the International Seminar on the Conservation of Asian Elephant (eds. Daniel, J.C. & Datye, H.S.), pp. 296313. Bombay Natural History Society, Oxford University Press, Bombay, India.
Baskaran, N., Udhayan, A. & Desai, A.A. (2010) Status of the Asian elephant population in Mudumalai Wildlife Sanctuary, Southern India. Gajah, 32, 613.
Berry, E.J., Gorchov, D.L., Endress, B.A. & Stevens, M.H.H. (2008) Source–sink dynamics within a plant population: the impact of substrate and herbivory on palm demography. Population Ecology, 50, 6377.
Chelliah, K., Bukka, H. & Sukumar, R. (2013) Modeling harvest rates and numbers from age and sex ratios: a demonstration for elephant populations. Biological Conservation, 165, 5461.
Daniel, J.C., Desai, A.A., Sivaganesan, N. & Ramesh Kumar, S. (1987) The Study of Some Endangered Species of Wildlife and Their Habitats—The Asian Elephant. Unpublished, Bombay Natural History Society, Bombay, India.
Daniels, R.J.R. (1993) The Nilgiri Biosphere Reserve and its role in conserving India's biodiversity. Current Science, 64, 706708.
Desai, A.A. & Baskaran, N. (1996) Impact of human activities on the ranging behaviour of elephants in the Nilgiri Biosphere Reserve, South India. Journal of the Bombay Natural History Society, 93, 559569.
Ginsberg, J.R. & Milner-Gulland, E.J. (1994) Sex-biased harvesting and population dynamics in ungulates: implications for conservation and sustainable use. Conservation Biology, 8, 157166.
Henschel, P., Coad, L., Burton, C., Chataigner, B., Dunn, A., MacDonald, D. et al. (2014) The lion in West Africa is Critically Endangered. PLoS ONE, 9(1), e83500.
Higgins, K., Hastings, A. & Botsford, L.W. (1997) Density dependence and age structure: nonlinear dynamics and population behavior. The American Naturalist, 149, 247269.
Jathanna, D., Karanth, K.U., Kumar, N.S., Goswami, V.R., Vasudev, D. & Karanth, K.K. (2015) Reliable monitoring of elephant populations in the forests of India: analytical and practical considerations. Biological Conservation, 187, 212220.
Jensen, A.L. (2000) Sex and age structured matrix model applied to harvesting a white tailed deer population. Ecological Modelling, 128, 245249.
Karanth, K.U., Nichols, J.D. & Hedges, S. (2012) Estimating abundance and other demographic parameters in elephant populations using capture–recapture sampling: statistical concepts. In Monitoring Elephant Populations and Assessing Threats (ed. Hedges, S.), pp. 112135. Universities Press (India) Private Ltd, Hyderabad, India.
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006) World map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259263.
Kumara, H.N., Rathnakumar, S., Ananda Kumar, M. & Singh, M. (2012) Estimating Asian elephant, Elephas maximus, density through distance sampling in the tropical forests of Biligiri Rangaswamy Temple Tiger Reserve, India. Tropical Conservation Science, 5, 163172.
Lakshminarayanan, N., Karanth, K.K., Goswami, V.R., Vaidyanathan, S. & Karanth, K.U. (2015) Determinants of dry season habitat use by Asian elephants in the Western Ghats of India. Journal of Zoology, 298, 169177.
Leimgruber, P., Gagnon, J.B., Wemmer, C., Kelly, D.S., Songer, M.A. & Selig, E.R. (2003) Fragmentation of Asia's remaining wildlands: implications for Asian elephant conservation. Animal Conservation, 6, 347359.
Maisels, F., Strindberg, S., Blake, S., Wittemyer, G., Hart, J., Williamson, E.A. et al. (2013) Devastating decline of forest elephants in Central Africa. PLoS ONE, 8(3), e59469.
Martin, E.B. & Vigne, L. (1989) The decline and fall of India's ivory industry. Pachyderm, 12, 421.
Milliken, T. (2014) Illegal Trade in Ivory and Rhino Horn: An Assessment Report to Improve Law Enforcement Under the Wildlife TRAPS Project. USAID and TRAFFIC. Https://www.usaid.gov/sites/default/files/documents/1865/W-TRAPS-Elephant-Rhino-report.pdf [accessed 7 March 2016].
Milner-Gulland, E.J. & Akçakaya, H.R. (2001) Sustainability indices for exploited populations. Trends in Ecology & Evolution, 16, 686692.
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853858.
Peel, M.C., Finlayson, B.L. & McMahon, T.A. (2007) Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences, 11, 16331644.
Prabhakar, R. & Pascal, J.-P. (1996) Nilgiri Biosphere Reserve Area. Vegetation and Land Use. Center for Ecological Sciences, Indian Institute of Science and the French Institute of Pondicherry, Pondicherry, India.
Puyravaud, J.-P. & Davidar, P. (2013) The Nilgiris Biosphere Reserve: an unrealized vision for conservation. Tropical Conservation Science, 6, 468476.
Ramesh, T., Sankar, K., Qureshi, Q. & Kalle, R. (2012) Group size and population structure of megaherbivores (gaur Bosgaurus and Asian elephant Elephas maximus) in a deciduous habitat of Western Ghats, India. Mammal Study, 37, 4754.
R Development Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Ricketts, T.H., Dinerstein, E., Boucher, T., Brooks, T.M., Butchart, S.H.M., Hoffmann, M. et al. (2005) Pinpointing and preventing imminent extinctions. Proceedings of the National Academy of Sciences of the United States of America, 102, 1849718501.
Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M. et al. (2014) Status and ecological effects of the world's largest carnivores. Science, 343, 1241484.
Roughgarden, J. & Smith, F. (1996) Why fisheries collapse and what to do about it. Proceedings of the National Academy of Sciences of the United States of America, 93, 50785083.
Stubben, C.J. & Milligan, B.G. (2007) Estimating and analyzing demographic models using the popbio package in R. Journal of Statistical Software, 22, 11.
Sukumar, R. (1989) The Asian Elephant: Ecology and Management. Cambridge University Press, Cambridge, UK.
Sukumar, R. (1991) The management of large mammals in relation to male strategies and conflict with people. Biological Conservation, 55, 93102.
Sukumar, R. (2003) The Living Elephants: Evolutionary Ecology, Behaviour, and Conservation. Oxford University Press, New York, USA.
Sukumar, R., Ramakrishnan, U. & Santosh, J.A. (1998) Impact of poaching on an Asian elephant population in Periyar, southern India: a model of demography and tusk harvest. Animal Conservation, 1, 281291.
Sukumar, R. & Santiapillai, C. (1993) Asian elephant in Sumatra. Population and habitat viability analysis. Gajah, 11, 5963.
Traill, L., Bradshaw, C. & Brook, B. (2007) Minimum viable population size: a meta-analysis of 30 years of published estimates. Biological Conservation, 139, 159166.
Varman, K.S. & Sukumar, R. (1995) The line transect method for estimating densities of large mammals in a tropical deciduous forest: an evaluation of models and field experiments. Journal of Biosciences, 20, 273287.
Williamson, M.H. (1959) Some extensions of the use of matrices in population theory. Bulletin of Mathematical Biophysics, 21, 1317.
Yackulic, C.B., Sanderson, E.W. & Uriarte, M. (2011) Anthropogenic and environmental drivers of modern range loss in large mammals. Proceedings of the National Academy of Sciences of the United States of America, 108, 40244029.

Keywords

Modelling harvest of Asian elephants Elephas maximus on the basis of faulty assumptions promotes inappropriate management solutions

  • Jean Philippe Puyravaud (a1), Priya Davidar (a2), Rajeev K. Srivastava (a3) and Belinda Wright (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed