Skip to main content Accessibility help
×
Home

Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa

  • Carolyn H. Devens (a1), Matt W. Hayward (a1), Thulani Tshabalala (a2), Amy Dickman (a3), Jeannine S. McManus (a2), Bool Smuts (a2) and Michael J. Somers (a1)...

Abstract

Apex predators play a critical role in maintaining the health of ecosystems but are highly susceptible to habitat degradation and loss caused by land-use changes, and to anthropogenic mortality. The leopard Panthera pardus is the last free-roaming large carnivore in the Western Cape province, South Africa. During 2011–2015, we carried out a camera-trap survey across three regions covering c. 30,000 km2 of the Western Cape. Our survey comprised 151 camera sites sampling nearly 14,000 camera-trap nights, resulting in the identification of 71 individuals. We used two spatially explicit capture–recapture methods (R programmes secr and SPACECAP) to provide a comprehensive density analysis capable of incorporating environmental and anthropogenic factors. Leopard density was estimated to be 0.35 and 1.18 leopards/100 km2, using secr and SPACECAP, respectively. Leopard population size was predicted to be 102–345 individuals for our three study regions. With these estimates and the predicted available leopard habitat for the province, we extrapolated that the Western Cape supports an estimated 175–588 individuals. Providing a comprehensive baseline population density estimate is critical to understanding population dynamics across a mixed landscape and helping to determine the most appropriate conservation actions. Spatially explicit capture–recapture methods are unbiased by edge effects and superior to traditional capture–mark–recapture methods when estimating animal densities. We therefore recommend further utilization of robust spatial methods as they continue to be advanced.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa
      Available formats
      ×

Copyright

Corresponding author

(Corresponding author) E-mail chdevens@gmail.com

Footnotes

Hide All
*

Also at: Research Department, Landmark Foundation, Riversdale, South Africa

Also at: School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia

Also at: School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Durban, South Africa

§

Also at: Department of Biodiversity and Conservation Biology, University of the Western Cape, Cape Town, South Africa

Also at: Centre for Invasion Biology, University of Pretoria, Pretoria, South Africa

Supplementary material for this article is available at https://doi.org/10.1017/S0030605318001473

Footnotes

References

Hide All
Balme, G.A., Hunter, L.T. & Slotow, R. (2009a) Evaluating methods for counting cryptic carnivores. Journal of Wildlife Management, 73, 433441.
Balme, G.A., Slotow, R. & Hunter, L.T. (2009b) Impact of conservation interventions on the dynamics and persistence of a persecuted leopard (Panthera pardus) population. Biological Conservation, 142, 26812690.
Balme, G.A., Slotow, R. & Hunter, L.T.B. (2010) Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze Complex, South Africa. Animal Conservation, 13, 315323.
Borchers, D.L. & Efford, M.G. (2008) Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics, 64, 377385.
Boron, V., Tzanopoulos, J., Gallo, J., Barragan, J., Jaimes-Rodriguez, L., Schaller, G. & Payán, E. (2016) Jaguar densities across human-dominated landscapes in Colombia: the contribution of unprotected areas to long term conservation. PLOS ONE, 11, e0153973.
Braczkowski, A.R., Balme, G.A., Dickman, A., Fattebert, J., Johnson, P., Dickerson, T. et al. (2016) Scent lure effect on camera-trap based leopard density estimates. PLOS ONE, 11, e0151033.
Cardillo, M., Purvis, A., Sechrest, W., Gittleman, J.L., Bielby, J. & Mace, G.M. (2004) Human population density and extinction risk in the world's carnivores. PLOS Biology, 2, e197.
CapeNature (2014) 2013/2014 Western Cape Landcover Product. Vector Geospatial Dataset. Western Cape Nature Conservation Board, Bridgetown, South Africa.
Chapman, S. & Balme, G. (2010) An estimate of leopard population density in a private reserve in KwaZulu-Natal, South Africa, using camera traps and capture–recapture models. South African Journal of Wildlife Research, 40, 114120.
Chase Grey, J.N., Kent, V.T. & Hill, R.A. (2013) Evidence of a high density population of harvested leopards in a montane environment. PLOS ONE, 8, 111.
Crooks, K.R. (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conservation Biology, 16, 488502.
Department of Environmental Affairs (2017) South Africa Protected Areas Database (SAPAD_OR_2017_Q3). http://egis.environment.gov.za [accessed 11 March 2019].
Devens, C., Tshabalala, T., McManus, J. & Smuts, B. (2018) Counting the spots: the use of a spatially explicit capture–recapture technique and GPS data to estimate leopard (Panthera pardus) density in the Eastern and Western Cape, South Africa. African Journal of Ecology, 56, 110.
Efford, M.G. (2011) secr—spatially explicit capture–recapture in R. R package version 2.1.0. https://CRAN.R-project.org/package=secr [accessed 11 March 2019].
Efford, M.G. (2016) secr: Spatially explicit capture–recapture models. R package version 2.10.3. https://CRAN.R-project.org/package=secr [accessed 11 March 2019].
Efford, M.G. & Fewster, R.M. (2013) Estimating population size by spatially explicit capture–recapture. Oikos, 122, 918928.
Efford, M.G., Borchers, D.L. & Byron, A.E. (2009) Density estimation by spatially explicit capture–recapture: likelihood-based methods. In Modeling Demographic Processes in Marked Populations (eds Thomson, D.L., Cooch, E.G. & Conroy, M.J.), pp. 255269. Springer, New York, USA.
Ellis, E.C. & Ramankutty, N. (2008) Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6, 439447.
Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J. et al. (2011) Trophic downgrading of planet Earth. Science, 333, 301306.
FAO (Food and Agriculture Organization of the United Nations) (2012) FAO GeoNetwork. Land Cover of South Africa – Globcover Regional. FAO, Rome, Italy. http://www.fao.org/geonetwork/srv/en/metadata.show?currTab=simple&id=37221 [accessed 13 June 2019].
Foster, R.J. & Harmsen, B.J. (2012) A critique of density estimation from camera-trap data. The Journal of Wildlife Management, 76, 224236.
Gerber, B.D., Karpanty, S.M. & Kelly, M.J. (2012) Evaluating the potential biases in carnivore capture–recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Population Ecology, 54, 4354.
Gopalaswamy, A.M., Royle, J.A., Hines, J.E., Singh, P., Jathanna, D., Kumar, N.S. & Karanth, K.U. (2012) Program SPACECAP: software for estimating animal density using spatially explicit capture–recapture models. Methods in Ecology and Evolution, 3, 10671072.
Griffiths, M. & van Schaik, C.P. (1993) The impact of human traffic on the abundance and activity periods of Sumatran rain forest wildlife. Conservation Biology, 7, 623626.
Harcourt, A., Parks, S. & Woodroffe, R. (2001) Human density as an influence on species/area relationships: double jeopardy for small African reserves? Biodiversity & Conservation, 10, 10111026.
Hayward, M.W., Boitani, L., Burrows, N.D., Funston, P., Karanth, K.U., MacKenzie, D. et al. (2015) Ecologists need to use robust survey design, sampling and analysis methods. Journal of Applied Ecology, 52, 286290.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: a Journal of the Royal Meteorological Society, 25, 19651978.
Jacobson, A.P., Gerngross, P., Lemeris, J.R. Jr, Schoonover, R.F., Anco, C., Breitenmoser-Würsten, C. et al. (2016) Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ, 4, e1974.
Jenks, G.F. (1967) The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186190.
Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. (2011) Density of tiger and leopard in a tropical deciduous forest of Mudumalai Tiger Reserve, southern India, as estimated using photographic capture–recapture sampling. Acta Theriologica, 56, 335342.
Karanth, K.U. (1995) Estimating tiger (Panthera tigris) populations from camera-trap data using capture–recapture models. Biological Conservation, 71, 333338.
Karanth, K.U. & Chellam, R. (2009) Carnivore conservation at the crossroads. Oryx, 43, 12.
Karanth, K.U. & Nichols, J.D. (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology, 79, 28522862.
Karanth, K.U. & Nichols, J.D. (2000) Ecological Status and Conservation of Tigers in India. Final Technical Report to the Division of International Conservation, US Fish and Wildlife Service, Washington, DC, USA, Wildlife Conservation Society, New York, USA, and Centre for Wildlife Studies, Bangalore, India.
Mann, G. (2014) Aspects of the ecology of leopards (Panthera pardus) in the Little Karoo, South Africa. PhD thesis, Rhodes University, Grahamstown, South Africa.
Maputla, N.W., Chimimba, C.T. & Ferreira, S.M. (2013) Calibrating a camera-trap based biased mark–recapture sampling design to survey the leopard population in the N'wanetsi concession, Kruger National Park, South Africa. African Journal of Ecology, 51, 422430.
Martins, Q.E. (2010) The ecology of the leopard Panthera pardus in the Cederberg Mountains. PhD thesis, University of Bristol, Bristol, UK.
McManus, J., Dickman, A., Gaynor, D., Smuts, B. & Macdonald, D. (2014) Dead or alive? Comparing costs and benefits of lethal and non-lethal human–wildlife conflict mitigation on livestock farms. Oryx, 49, 687695.
McManus, J., Dalton, D.L., Kotzé, A., Smuts, B. & Dickman, A. (2015) Gene flow and population structure of a solitary top carnivore in a human-dominated landscape. Ecology and Evolution, 5, 335344.
Mucina, L. & Rutherford, M.C. (eds) (2006) The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria, South Africa.
Noss, A.J., Gardener, B., Maffei, L., Cuéllar, E., Montaño, R. et al. (2012) Comparison of density estimation methods for mammal populations with camera traps in the Kaa-lya del Gran Chaco landscape. Animal Conservation, 15, 527535.
Obbard, M.E., Howe, E.J. & Kyle, C.J. (2010) Empirical comparison of density estimators for large carnivores. Journal of Applied Ecology, 47, 7684.
Phillips, S.J., Dudik, M., Schapire, R.E. (2017) Maxent Software for Modelling Species Niches and Distributions (version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent [accessed 23 July 2019].
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231259.
QGIS Development Team (2013) QGIS Geographic Information System. Open Source Geospatial Foundation, Beaverton, USA. http://qgis.osgeo.org [accessed 11 March 2019].
R Core Team (2017) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org [accessed 23 July 2019].
Ray, J.C., Hunter, L.T.B. & Zigouris, J. (2005) Setting Conservation and Research Priorities for Larger African Carnivores. Wildlife Conservation Society, New York, USA.
Rouget, M., Reyers, B., Jonas, Z., Desmet, P., Driver, A., Maze, K. et al. (2004) South African National Spatial Biodiversity Assessment 2004: Technical Report. Volume 1: Terrestrial Component. South African National Biodiversity Institute, Pretoria, South Africa.
Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M. et al. (2014) Status and ecological effects of the world's largest carnivores. Science, 343, 1241484.
R Studio Team (2015) R Studio: Integrated Development for R . RStudio, Inc. , Boston, USA. http://www.rstudio.com [accessed 11 March 2019].
Silver, S.C., Ostro, L.E.T., Marsh, L.K., Maffei, L., Noss, A.J., Kelly, M.J. et al. (2004) The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx, 38, 148154.
Soisalo, M.K. & Cavalcanti, S.M.C. (2006) Estimating the density of a jaguar population in the Brazilian Pantanal using camera traps and capture–recapture sampling in combination with GPS radio-telemetry. Biological Conservation, 129, 487496.
Swanepoel, L.H., Lindsey, P., Somers, M.J., Hoven, W.V. & Dalerum, F. (2013) Extent and fragmentation of suitable leopard habitat in South Africa. Animal Conservation, 16, 4150.
Swanepoel, L.H., Somers, M.J. & Dalerum, F. (2015) Density of leopards Panthera pardus on protected and non-protected land in the Waterberg Biosphere, South Africa. Wildlife Biology, 21, 263268.
Thamm, A.G. & Johnson, M.R. (2006) The Cape Supergroup. In The Geology of South Africa (eds Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J.), pp. 443460. Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria, South Africa.
Thapa, K., Shrestha, R., Karki, J., Thapa, G.J., Subedi, N., Pradhan, N.M.B. et al. (2014) Leopard Panthera pardus fusca density in the seasonally dry, subtropical forest in the Bhabhar of Terai Arc, Nepal. Advances in Ecology, 2014, 112.
Treves, A. & Karanth, K.U. (2003) Human–carnivore conflict and perspectives on carnivore management worldwide. Conservation Biology, 17, 14911499.
Treves, A. & Naughton-Treves, L. (2005) Evaluating lethal control in the management of human–wildlife conflict. Conservation Biology, 9, 86106.
Treves, A., Naughton-Treves, L., Harper, E.K., Mladenoff, D.J., Rose, R.A., Sickley, T.A. & Wydeven, A.P. (2004) Predicting human–carnivore conflict: a spatial model derived from 25 years of data on wolf predation on livestock. Conservation Biology, 18, 114125.
Traill, L.W., Bradshaw, C.J.A. & Brook, B.W. (2007) Minimum viable population size: a meta-analysis of 30 years of published estimates. Biological Conservation, 139, 159166.
WCS (Wildlife Conservation Society) & CIESIN (Center for International Earth Science Information Network) (2005) Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). NASA Socioeconomic Data and Applications Center, Palisades, USA. https://doi.org/10.7927/H4M61H5F [accessed 13 June 2019].
Wolf, C. & Ripple, W.J. (2017) Range contractions of the world's large carnivores. Royal Society Open Science, 4, 170052.
Woodroffe, R. (2000) Predators and people: using human densities to interpret declines of large carnivores. Animal Conservation, 3, 165173.
Woodroffe, R. & Ginsberg, J.R. (1998) Edge effects and the extinction of populations inside protected areas. Science, 280, 21262128.

Keywords

Type Description Title
PDF
Supplementary materials

Devens et al. supplementary material
Tables S1-S2

 PDF (77 KB)
77 KB

Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa

  • Carolyn H. Devens (a1), Matt W. Hayward (a1), Thulani Tshabalala (a2), Amy Dickman (a3), Jeannine S. McManus (a2), Bool Smuts (a2) and Michael J. Somers (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed