Skip to main content Accessibility help

A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents

  • Anestis Dougkas (a1), Suzanne Barr (a2), Sheela Reddy (a3) and Carolyn D. Summerbell (a4)


Existing reviews suggest that milk and other dairy products do not play a role in the development of obesity in childhood, but they do make an important contribution to children’s nutrient intake. It is thus curious that public health advice on the consumption of dairy products for children is often perceived as unclear. The present review aimed to provide an overview of the totality of the evidence on the association between milk and other dairy products, and obesity and indicators of adiposity, in children. Our search identified forty-three cross-sectional studies, thirty-one longitudinal cohort studies and twenty randomised controlled trials. We found that milk and other dairy products are consistently found to be not associated, or inversely associated, with obesity and indicators of adiposity in children. Adjustment for energy intake tended to change inverse associations to neutral. Also, we found little evidence to suggest that the relationship varied by type of milk or dairy product, or age of the children, although there was a dearth of evidence for young children. Only nine of the ninety-four studies found a positive association between milk and other dairy products and body fatness. There may be some plausible mechanisms underlying the effect of milk and other dairy products on adiposity that influence energy and fat balance, possibly through fat absorption, appetite or metabolic activity of gut microbiota. In conclusion, there is little evidence to support a concern to limit the consumption of milk and other dairy products for children on the grounds that they may promote obesity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Anestis Dougkas, email


Hide All
1. World Health Organization (2016) Commission on Ending Childhood Obesity. (accessed October 2018).
2. World Health Organization (2016) Obesity and overweight: fact sheet (updated). (accessed October 2018).
3. Monteiro, CA, Conde, WL, Lu, B, et al. (2004) Obesity and inequities in health in the developing world. Int J Obes 28, 11811186.
4. Ebbeling, C, Pawlak, D & Ludwig, D (2002) Childhood obesity: public-health crisis, common sense cure. Lancet 360, 473482.
5. Whitaker, RC, Wright, JA, Pepe, MS, et al. (1997) Predicting obesity in young adulthood from childhood and parental obesity. New Engl J Med 337, 869873.
6. Seidell, JC & Halberstadt, J (2015) The global burden of obesity and the challenges of prevention. Ann Nutr Metab 66, Suppl. 2, 712.
7. Change4Life (2017) Change4Life. (accessed November 2017).
8. Stanford, FC, Tauqeer, Z & Kyle, TK (2018) Media and its influence on obesity. Curr Obes Rep 7, 186192.
9. Buttriss, JL (2016) The Eatwell Guide refreshed. Nutr Bull 41, 135141.
10. Change4Life (2014) Swap while you shop: new campaign launched to get families making healthy swaps in January. (accessed June 2018).
11. NHS (2018) Eat Well: dairy and alternatives in your diet. (accessed June 2018).
12. Public Health England (2018) Closed consultation: UK Nutrient Profiling Model 2018 review. (accessed June 2018).
13. Garrow, J (1979) Weight penalties. Br Med J 2, 11711172.
14. European Commission (2017) Milk and milk products. (accessed August 2017).
15. United States Department of Agriculture (2015) 2015–2020 Dietary Guidelines for Americans: 8th edition. (accessed October 2018).
16. EUR-Lex (2017) Europa EU Law and Publications Regulation (EC) No 178/2002. (accessed August 2017).
17. Finglas, PM, Roe, MA, Pinchen, HM, et al. (2015) McCance and Widdowson’s The Composition of Foods: Seventh Summary Edition. Cambridge: Royal Society of Chemistry.
18. National Research Council (US) Committee on Technological Options to Improve the Nutritional Attributes of Animal Products (1988) Designing Foods: Animal Product Options in the Marketplace. Factors Affecting the Composition of Milk from Dairy Cows. Washington, DC: National Academies Press. (accessed October 2018).
19. Auestad, N, Hurley, JS, Fulgoni, VL III, et al. (2015) Contribution of food groups to energy and nutrient intakes in five developed countries. Nutrients 7, 45934618.
20. World Health Organization (2018) Global and regional food consumption patterns and trends. (accesssed June 2018).
21. Global Nutrition and Policy Consortium (2014) Home of the Global Dietary Database. Tufts Friedman School of Nutrition Science and Policy. (accessed June 2018).
22. Louie, JCY, Flood, VM, Hector, DJ, et al. (2011) Dairy consumption and overweight and obesity: a systematic review of prospective cohort studies. Obes Rev 12, 582592.
23. Dror, DK &Allen, LH (2013) Dairy product intake in children and adolescents in developed countries: trends, nutritional contribution, and a review of association with health outcomes. Nutr Rev 72, 6881.
24. Dror, DK (2014) Dairy consumption and pre-school, school-age and adolescent obesity in developed countries: a systematic review and meta-analysis. Obes Rev 15, 516527.
25. Lu, L, Xun, P, Wan, Y, et al. (2016) Long-term association between dairy consumption and risk of childhood obesity: a systematic review and meta-analysis of prospective cohort studies. Eur J Clin Nutr 70, 414423.
26. Wang, W, Wu, Y & Zhang, D (2016) Association of dairy products consumption with risk of obesity in children and adults: a meta-analysis of mainly cross-sectional studies. Ann Epidemiol 26, 870882.
27. Kouvelioti, R, Josse, A & Klentrou, P (2017) The effects of dairy consumption on body composition and bone properties in youth: a systematic review. Curr Dev Nutr 1, e001214.
28. Møller, MH, Ioannidis, JPA & Darmon, M (2018) Are systematic reviews and meta‑analyses still useful research? We are not sure. Intensive Care Med 44, 518520.
29. Nezami, M, Segovia-Siapco, G, Beeson, W, et al. (2016) Associations between consumption of dairy foods and anthropometric indicators of health in adolescents. Nutrients 8, E427.
30. Wiley, A (2010) Dairy and milk consumption and child growth: is BMI involved? An analysis of NHANES 1999–2004. Am J Hum Biol 22, 517525.
31. Rangan, AM, Flood, VL, Denyer, G, et al. (2012) The effect of dairy consumption on blood pressure in mid-childhood: CAPS cohort study. Eur J Clin Nutr 66, 652657.
32. Garden, FL, Marks, GB, Almqvist, C, et al. (2011) Infant and early childhood dietary predictors of overweight at age 8 years in the CAPS population. Eur J Clin Nutr 65, 454462.
33. Phillips, SM, Bandini, LG, Cyr, H, et al. (2003) Dairy food consumption and body weight and fatness studied longitudinally over the adolescent period. Int J Obes 27, 11061113.
34. Fayet-Moore, F (2015) Effect of flavored milk vs plain milk on total milk intake and nutrient provision in children. Nutr Rev 74, 117.
35. Noel, S, Ness, AR, Northstone, K, et al. (2013) Associations between flavored milk consumption and changes in weight and body composition over time: differences among normal and overweight children. Eur J Clin Nutr 67, 295300.
36. Vanselow, MS, Pereira, MA, Neumark-Sztainer, D, et al. (2009) Adolescent beverage habits and changes in weight over time: findings from Project EAT. Am J Clin Nutr 90, 14891495.
37. Kratz, M, Baars, T & Guyenet, S (2013) The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur J Nutr 52, 124.
38. Noel, S, Ness, AR, Northstone, K, et al. (2011) Milk intakes are not associated with percent body fat in children from ages 10 to 13 years. J Nutr 141, 20352041.
39. Huh, SY, Rifas-Shiman, SL, Rich-Edwards, JW, et al. (2010) Prospective association between milk intake and adiposity in preschool-aged children. J Am Diet Assoc 110, 563570.
40. Scharf, RJ, Demmer, RT & DeBoer, MD (2013) Longitudinal evaluation of milk type consumed and weight status in preschoolers. Arch Dis Child 98, 335340.
41. Berkey, C, Rockett, H, Willett, W, et al. (2005) Milk, dairy fat, dietary calcium, and weight gain. Arch Pediatr Adolesc Med 159, 543550.
42. Bigornia, SJ, LaValley, MP, Moore, LL, et al. (2014) Dairy intakes at age 10 years do not adversely affect risk of excess adiposity at 13 years. J Nutr 144, 10811090.
43. Dubois, L, Diasparra, M, Bogl, L, et al. (2016) Dietary intake at 9 years and subsequent body mass index in adolescent boys and girls: a study of monozygotic twin pairs. Twin Res Hum Genet 19, 4759.
44. Gidding, SS, Dennison, BA, Birch, LL, et al. (2006) Dietary recommendations for children and adolescents: a guide for practitioners. Pediatrics 117, 544559.
45. Carruth, BR & Skinner, JD (2001) The role of dietary calcium and other nutrients in moderating body fat in preschool children. Int J Obes Relat Metab Disord 25, 559566.
46. Skinner, JD, Bounds, W, Carruth, BR, et al. (2003) Longitudinal calcium intake is negatively related to children’s body fat indexes. J Am Diet Assoc 103, 16261631.
47. Dixon, LB, Pellizzon, MA, Jawad, AF, et al. (2005) Calcium and dairy intake and measures of obesity in hyper- and normocholesterolemic children. Obesity Res 13, 17271738.
48. Fisher, J, Mitchell, D, Smiciklas-Wright, H, et al. (2004) Meeting calcium recommendations during middle childhood reflects mother–daughter beverage choices and predicts bone mineral status. Am J Clin Nutr 79, 698706.
49. Barr, S (2007) Calcium and body fat in peripubertal girls: cross-sectional and longitudinal observations. Obesity 15, 13021310.
50. Rockell, JEP, Williams, SM, Taylor, RW, et al. (2004) Two-year changes in bone and body composition in young children with a history of prolonged milk avoidance. Osteoporos Int 16, 10161023.
51. Striegel-Moore, RH, Thompson, D, Affenito, SG, et al. (2006) Correlates of beverage intake in adolescent girls: The National Heart, Lung, and Blood Institute Growth and Health Study. J Pediatr 148, 183187.
52. Wang, Y (2002) Is obesity associated with early sexual maturation? A comparison of the association in American boys versus girls. Pediatrics 110, 903910.
53. Hasnain, SR, Singer, MR, Bradlee, ML, et al. (2014) Beverage intake in early childhood and change in body fat from preschool to adolescence. Child Obes 10, 4249.
54. DeBoer, MD, Agard, HE & Scharf, RJ (2014) Milk intake, height and body mass index in preschool children. Arch Dis Childhood 100, 460465.
55. Moore, LL, Singer, MR, Qureshi, MM, et al. (2008) Dairy intake and anthropometric measures of body fat among children and adolescents in NHANES. J Am Coll Nutr 27, 702710.
56. Charney, M (2010) Review of bioactive components in milk and dairy products. J Agric Food Inf 11, 358359.
57. Liu, S, Choi, HK, Ford, E, et al. (2006) A prospective study of dairy intake and the risk of type 2 diabetes in women. Diabetes Care 29, 15791584.
58. Margolis, KL, Wei, F, de Boer, IH, et al. (2011) A diet high in low-fat dairy products lowers diabetes risk in postmenopausal women. J Nutr 141, 19691974.
59. Sempos, C (1992) Invited commentary: some limitations of semi quantitative food frequency questionnaires. Am J Epidemiol 135, 11271132.
60. Salvini, S, Hunter, DJ, Sampson, L, et al. (1989) Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol 18, 858867.
61. Huang, TT, Roberts, SB, Howarth, NC, et al. (2005) Effect of screening out implausible energy intake reports on relationships between diet and BMI. Obes Rev 13, 12051217.
62. Bandini, LG, Must, A, Cyr, H, et al. (2003) Longitudinal changes in the accuracy of reported energy intake in girls 10–15 y of age. Am J Clin Nutr 78, 480484.
63. Singer, MR, Moore, LL, Garrahie, EJ, et al. (1995) The tracking of nutrient intake in young children: The Framingham Children’s Study. Am J Public Health 85, 16731677.
64. Boulton, TJ, Magarey, AM & Cockington, RA (1995) Tracking of serum lipids and dietary energy, fat, and calcium intake 1 to 15 years. Acta Paediatr 84, 10501055.
65. Petit, M (2002) A randomised school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17, 363372.
66. Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S1231S.
67. Chan, GM, Hoffman, K & McMurry, M (1995) Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 126, 551556.
68. Cadogan, J, Eastell, R, Jones, N, et al. (1997) Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ 315, 12551260.
69. Merrilees, MJ, Smart, EJ, Gilchrist, NL, et al. (2000) Effects of dairy food supplements on bone mineral density in teenage girls. Eur J Nutr 39, 256262.
70. Volek, JS, Gómez, AL, Scheett, TP, et al. (2003) Increasing fluid milk favorably affects bone mineral density responses to resistance training in adolescent boys. J Am Diet Assoc 103, 13531356.
71. Cheng, S, Lyytikäinen, A, Kröger, A, et al. (2005) Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10–12-y-old girls: a 2-y randomized trial. Am J Clin Nutr 82, 11151126.
72. Lau, EMC, Lynn, H, Chan, YH, et al. (2004) Benefits of milk powder supplementation on bone accretion in Chinese children. Osteoporos Int 15, 654658.
73. Weber, D, Stark, L, Ittenbach, R, et al. (2017) Building better bones in childhood: a randomized controlled study to test the efficacy of a dietary intervention program to increase calcium intake. Eur J Clin Nutr 71, 788794.
74. Vogel, K, Martin, B, McCabe, L, et al. (2017) The effect of dairy intake on bone mass and body composition in early pubertal girls and boys: a randomized controlled trial. Am J Clin Nutr 105, 12141229.
75. Du, X, Zhu, K, Trube, A, et al. (2004) School-milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10–12 years in Beijing. Br J Nutr 92, 159168.
76. Lappe, J, Rafferty, K, Davies, K, et al. (2004) Girls on a high-calcium diet gain weight at the same rate as girls on a normal diet: a pilot study. J Am Diet Assoc 104, 13611367.
77. Li, P, Fan, C, Lu, Y, et al. (2016) Effects of calcium supplementation on body weight: a meta-analysis. Am J Clin Nutr 104, 12631273.
78. Arnberg, K, Mølgaard, C, Michaelsen, KF, et al. (2012) Skim milk, whey, and casein increase body weight and whey and casein increase the plasma C-peptide concentration in overweight adolescents. J Nutr 142, 20832090.
79. Larnkjaer, A, Arnberg, K, Michaelsen, KF, et al. (2015) Effect of increased intake of skimmed milk, casein, whey or water on body composition and leptin in overweight adolescents: a randomized trial. Pediatr Obes 10, 461467.
80. Albala, C, Ebbeling, C, Cifuentes, M, et al. (2008) Effects of replacing the habitual consumption of sugar-sweetened beverages with milk in Chilean children. Am J Clin Nutr 88, 605611.
81. Lappe, J, McMahon, D, Laughlin, A, et al. (2017) The effect of increasing dairy calcium intake of adolescent girls on changes in body fat and weight. Am J Clin Nutr 105, 10461053.
82. St-Onge, MP, Goree, LL & Gower, B (2009) High-milk supplementation with healthy diet counseling does not affect weight loss but ameliorates insulin action compared with low-milk supplementation in overweight children. J Nutr 139, 933938.
83. Kelishadi, R, Zemel, M, Hashemipour, M, et al. (2009) Can a dairy-rich diet be effective in long-term weight control of young children? J Am Coll Nutr 28, 601610.
84. Chen, M, Pan, A, Malik, VS, et al. (2012) Effects of dairy intake on body weight and fat: a meta-analysis of randomized controlled trials. Am J Clin Nutr 96, 735747.
85. Abargouei, A, Janghorbani, M, Salehi-Marzijarani, M, et al. (2012) Effect of dairy consumption on weight and body composition in adults: a systematic review and meta-analysis of randomized controlled clinical trials. Int J Obes 36, 14851493.
86. Ghayour-Mobarhan, M, Sahebkar, A, Vakili, R, et al. (2009) Investigation of the effect of high dairy diet on body mass index and body fat in overweight and obese children. Indian J Pediatr 76, 11451150.
87. Du, X, Greenfield, H, Fraser, DR, et al. (2001) Vitamin D deficiency and associated factors in adolescent girls in Beijing. Am J Clin Nutr 74, 494500.
88. Fellows, P & Hampton, A (editors) (1992) Chapter 9: Milk and milk products. In Small-scale Food Processing: A Guide for Appropriate Equipment. London: Intermediate Technology Publications. (accessed June 2018).
89. Kang, SH, Kim, JU, Imm, JY, et al. (2006) The effects of dairy processes and storage on insulin-like growth factor-I (IGF-I) content in milk and in model IGF-1-fortified dairy products. J Dairy Sci 89, 402409.
90. Weaver, C, Campbell, W, Teegarden, D, et al. (2011) Calcium, dairy products, and energy balance in overweight adolescents: a controlled trial. Am J Clin Nutr 94, 11631170.
91. Maffeis, C, Pietrobelli, A, Grezzani, A, et al. (2001) Waist circumference and cardiovascular risk factors in prepubertal children. Obes Res 9, 179187.
92. Savva, SC, Tornaritis, M, Savva, ME, et al. (2000) Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord 24, 14531458.
93. Dougkas, A, Reynolds, C, Givens, I, et al. (2011) Associations between dairy consumption and body weight: a review of the evidence and underlying mechanisms. Nutr Res Rev 24, 7295.
94. Major, G, Chaput, J, Ledoux, M, et al. (2008) Recent developments in calcium-related obesity research. Obes Rev 9, 428445.
95. Soares, M, Murhadi, L, Kurpad, A, et al. (2012) Mechanistic roles for calcium and vitamin D in the regulation of body weight. Obes Rev 13, 592605.
96. Zemel, M (2002) Regulation of adiposity and obesity risk by dietary calcium: mechanisms and implications. J Am Coll Nutr 21, 146S151S.
97. Shi, H, Norman, AW, Okamura, WH, et al. (2001) 1α,25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. FASEB J 15, 27512753.
98. Zemel, M (2003) Role of dietary calcium and dairy products in modulating adiposity. Lipids 38, 139146.
99. Xue, B, Greenberg, AG, Kraemer, FB, et al. (2001) Mechanism of intracellular calcium ([Ca2+]i) inhibition of lipolysis in human adipocytes. FASEB J 15, 25272529.
100. Gonzalez, JT, Rumbold, PL & Stevenson, EJ (2012) Effect of calcium intake on fat oxidation in adults: a meta-analysis of randomized, controlled trials. Obes Rev 13, 848857.
101. Bortolotti, M, Rudelle, S, Schneiter, P, et al. (2008) Dairy calcium supplementation in overweight or obese persons: its effect on markers of fat metabolism. Am J Clin Nutr 88, 877885.
102. Dugan, C, Barona, J & Fernandez, M (2014) Increased dairy consumption differentially improves metabolic syndrome markers in male and female adults. Metab Syndr Relat Disord 12, 6269.
103. Sun, X & Zemel, MB (2007) Calcium and 1,25-dihydroxyvitamin D3 regulation of adipokine expression. Obesity (Silver Spring) 15, 340348.
104. Zemel, M (2005) The role of dairy foods in weight management. J Am Coll Nutr 24, 537S546S.
105. Pihlanto-Leppala, A, Koskinen, P, Piilola, K, et al. (2000) Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J Dairy Res 67, 5364.
106. Shah, N (2000) Effects of milk-derived bioactives: an overview. Br J Nutr 84, Suppl. 1, S3S10.
107. Belury, M (2002) Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annu Rev Nutr 22, 505531.
108. Ing, S & Belury, MA (2011) Impact of conjugated linoleic acid on bone physiology: proposed mechanism involving inhibition of adipogenesis. Nutr Rev 69, 123131.
109. Marten, B, Pfeuffer, M & Schrezenmeir, J (2006) Medium-chain triglycerides. Int Dairy J 16, 13741382.
110. Moon, HS, Lee, HG, Seo, JH, et al. (2009) Antiobesity effect of PEGylated conjugated linoleic acid on high-fat diet-induced obese C57BL/6J (ob/ob) mice: attenuation of insulin resistance and enhancement of antioxidant defenses. J Nutr Biochem 20, 187194.
111. Denke, MA, Fox, MM & Schulte, MC (1993) Short-term dietary calcium fortification increases fecal saturated fat content and reduces serum lipids in men. J Nutr 123, 10471053.
112. Jacobsen, R, Lorenzen, JK, Toubro, S, et al. (2005) Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion. Int J Obes 29, 292301.
113. Jandacek, R (1991) The solubilization of calcium soaps by fatty acids. Lipids 26, 250253.
114. Christensen, R, Lorenzen, JK, Svith, CR, et al. (2009) Effect of calcium from dairy and dietary supplements on faecal fat excretion: a meta-analysis of randomized controlled trials. Obes Rev 10, 475486.
115. Lutwak, L, Laster, L, Gitelman, H, et al. (1964) Effects of high dietary calcium and phosphorus on calcium, phosphorus, nitrogen and fat metabolism in children. Am J Clin Nutr 14, 7682.
116. Goran, M & Gower, B (1999) Relation between visceral fat and disease risk in children and adolescents. Am J Clin Nutr 70, 149S156S.
117. Huang, TT & McCrory, MA (2005) Dairy intake, obesity, and metabolic health in children and adolescents: knowledge and gaps. Nutr Rev 63, 7180.
118. Tordoff, MG (2001) Calcium: taste, intake, and appetite. Physiol Rev 81, 15671597.
119. Tordoff, MG (2008) Gene discovery and the genetic basis of calcium consumption. Physiol Behav 94, 649659.
120. Wennersberg, MH, Smedman, A, Turpeinen, AM, et al. (2009) Dairy products and metabolic effects in overweight men and women: results from a 6-mo intervention study. Am J Clin Nutr 90, 960968.
121. Gonzalez, J & Stevenson, E (2013) Calcium co-ingestion augments postprandial glucose-dependent insulinotropic peptide1–42, glucagon-like peptide-1 and insulin concentrations in humans. Eur J Nutr 53, 375385.
122. Gonzalez, J, Green, B, Campbell, M, et al. (2014) The influence of calcium supplementation on substrate metabolism during exercise in humans: a randomized controlled trial. Eur J Clin Nutr 68, 712718.
123. Gonzalez, J, Green, B, Brown, M, et al. (2015) Calcium ingestion suppresses appetite and produces acute overcompensation of energy intake independent of protein in healthy adults. J Nutr 145, 476482.
124. Bendtsen, L, Lorenzen, J, Bendsen, N, et al. (2013) Effect of dairy proteins on appetite, energy expenditure, body weight, and composition: a review of the evidence from controlled clinical trials. Adv Nutr 4, 418438.
125. Shafer, RB, Levine, AS, Marlette, JM, et al. (1985) Do calories, osmolality, or calcium determine gastric emptying? Am J Physiol 248, R479R483.
126. Jordi, J, Herzog, B, Camargo, SM, et al. (2013) Specific amino acids inhibit food intake via the area postrema or vagal afferents. J Physiol 591, 56115621.
127. Nakajima, S, Hira, T & Hara, H (2012) Calcium-sensing receptor mediates dietary peptide-induced CCK secretion in enteroendocrine STC-1 cells. Mol Nutr Food Res 56, 753760.
128. Mace, O, Schindler, M & Patel, S (2012) The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J Physiol 590, 29172936.
129. Behar, J, Hitchings, M & Smyth, RD (1977) Calcium stimulation of gastrin and gastric acid secretion: effect of small doses of calcium carbonate. Gut 18, 442448.
130. Villarroel, P, Villalobos, E, Reyes, M, et al. (2014) Calcium, obesity, and the role of the calcium-sensing receptor. Nutr Rev 72, 627637.
131. Marette, A & Picard-Deland, E (2014) Yogurt consumption and impact on health: focus on children and cardiometabolic risk. Am J Clin Nutr 99, 1243S1247S.
132. Moreno, L, Bel-Serrat, S, Santaliestra-Pasías, A, et al. (2015) Dairy products, yogurt consumption, and cardiometabolic risk in children and adolescents. Nutr Rev 73, 814.
133. Karlsson, CL, Onnerfalt, J, Xu, J, et al. (2012) The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20, 22572261.
134. Bervoets, L, Van Hoorenbeeck, K, Kortleven, I, et al. (2013) Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog 5, 10.
135. Kalliomaki, M, Collado, MC, Salminen, S, et al. (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87, 534538.
136. Arora, T, Singh, S & Sharma, RK (2013) Probiotics: interaction with gut microbiome and antiobesity potential. Nutrition 29, 591596.
137. Luoto, R, Kalliomäki, M, Laitinen, K, et al. (2010) The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes 34, 15311537.
138. Safavi, M, Farajian, S, Kelishadi, R, et al. (2013) The effects of synbiotic supplementation on some cardio-metabolic risk factors in overweight and obese children: a randomized triple-masked controlled trial. Int J Food Sci Nutr 64, 687693.
139. Günther, AL, Remer, T, Kroke, A, et al. (2007) Early protein intake and later obesity risk: which protein sources at which time points throughout infancy and childhood are important for body mass index and body fat percentage at 7 y of age? Am J Clin Nutr 86, 17651772.
140. Braun, K, Erler, N, Kiefte-de Jong, J, et al. (2016) Dietary intake of protein in early childhood is associated with growth trajectories between 1 and 9 years of age. J Nutr 146, 23612367.
141. Hoppe, C, Molgaard, C, Juul, A, et al. (2004) High intakes of skimmed milk, but not meat, increase serum IGF-I and IGFBP-3 in eight-year-old boys. Eur J Clin Nutr 58, 12111216.
142. Hoppe, C, Udam, TR, Lauritzen, L, et al. (2004) Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. Am J Clin Nutr 80, 447452.
143. Rogers, I, Emmett, P, Gunnell, D, et al. (2006) Milk as a food for growth? The insulin-like growth factors link. Public Health Nutr 9, 359368.
144. Koletzko, B (2006) Long-term consequences of early feeding on later obesity risk. Nestle Nutr Workshop Ser Pediatr Program 58, 118.
145. Rolland-Cachera, MF, Deheeger, M, Akrout, M, et al. (1995) Influence of macronutrients on adiposity development: a follow up study of nutrition and growth from 10 months to 8 years of age. Int J Obes Relat Metab Disord 19, 573578.
146. Fall, CH, Clark, PM, Hindmarsh, PC, et al. (2000) Urinary GH and IGF-I excretion in nine year-old children:relation to sex, current size and size at birth. Clin Endocrinol (Oxf) 53, 6976.
147. Garnett, S, Cowell, CT, Bradford, D, et al. (1999) Effects of gender, body composition and birth size on IGF-I in 7- and 8-year-old children. Horm Res 52, 221229
148. Juul, A, Holm, K, Kastrup, KW, et al. (1997) Free insulin-like growth factor I serum levels in 1430 healthy children and adults, and its diagnostic value in patients suspected of growth hormone deficiency. J Clin Endocrinol Metab 82, 24972502
149. Pal, S & Ellis, V (2010) The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. Br J Nutr 104, 12411248.
150. Akhavan, T, Luhovyy, BL, Brown, PH, et al. (2010) Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am J Clin Nutr 91, 966975.
151. Bjørnshave, A & Hermansen, K (2014) Effects of dairy protein and fat on the metabolic syndrome and type 2 diabetes. Rev Diabet Stud 11, 153166.
152. Hill, DJ & Milner, RD (1985) Insulin as a growth factor. Pediatr Res 19, 879886.
153. Dove, ER, Hodgson, JM, Puddey, IB, et al. (2009) Skimmed milk compared with a fruit drink acutely reduces appetite and energy intake in overweight men and women. Am J Clin Nutr 90, 7075.
154. Dougkas, A, Minihane, AM, Givens, DI, et al. (2011) Differential effects of dairy snacks on appetite ratings, but not overall energy intake. Proc Nutr Soc 70, E131.
155. Maersk, M, Belza, A, Holst, JJ, et al. (2012) Satiety scores and satiety hormone response after sucrose-sweetened soft drink compared with isocaloric semi-skimmed milk and with non-caloric soft drink: a controlled trial. Eur J Clin Nutr 66, 523529.
156. Onvani, S, Haghighatdoost, F, Surkan, PJ, et al. (2016) Dairy products, satiety and food intake: A meta-analysis of clinical trials. Clin Nutr 36, 389398.
157. Brindal, E, Baird, D, Slater, A, et al. (2012) The effect of beverages varying in glycaemic load on postprandial glucose responses, appetite and cognition in 10–12-year-old school children. Br J Nutr 110, 529537.
158. Mehrabani, S, Safavi, SM, Asemi, M, et al. (2015) Effects of low-fat milk consumption at breakfast on satiety and short-term energy intake in 10- to 12-year-old obese boys. Eur J Nutr 55, 13891396.
159. Kling, SMR, Roe, LS, Sanchez, CE, et al. (2016) Does milk matter: is children’s intake affected by the type or amount of milk served at a meal? Appetite 105, 509518.
160. Vien, S, Luhovyy, BL, Patel, BP, et al. (2017) Pre- and within meal effects of fluid dairy products on appetite, food intake, glycemia and regulatory hormones in children. Appl Physiol Nutr Metab 42, 302310.
161. Green, BP, Stevenson, EJ & Rumbold, PLS (2017) Metabolic, endocrine and appetite-related responses to acute and daily milk snack consumption in healthy, adolescent males. Appetite 108, 93103.
162. Andersen, LBB, Arnberg, K, Trolle, E, et al. (2016) The effects of water and dairy drinks on dietary patterns in overweight adolescents. Int J Food Sci Nutr 67, 314324.
163. Hendrie, GA & Golley, RK (2011) Changing from regular-fat to low-fat dairy foods reduces saturated fat intake but not energy intake in 4–13-y-old children. Am J Clin Nutr 93, 11171127.
164. Golley, RK & Hendrie, GA (2012) The impact of replacing regular- with reduced-fat dairy foods on children’s wider food intake: secondary analysis of a cluster RCT. Eur J Clin Nutr 66, 11301134.
165. Newby, P, Peterson, K, Berkey, C, et al. (2004) Beverage consumption is not associated with changes in weight and body mass index among low-income preschool children in North Dakota. J Am Diet Assoc 104, 10861094.
166. Faith, MS, Dennison, BA, Edmunds, LS, et al. (2006) Fruit juice intake predicts increased Adiposity gain in children from low-income families: weight status-by-environment interaction. Pediatrics 6, 20662075.
167. Tam, CS, Garnett, SP, Cowell, CT, et al. (2006) Soft drink consumption and excess weight gain in Australian school students: results from the Nepean study. Int J Obes 30, 10911093.
168. Johnson, L, Mander, AP, Jones, LR, et al. (2007) Is sugar-sweetened beverage consumption associated with increased fatness in children? Nutrition 23, 557563.
169. Kral, TVE, Stunkard, AJ, Berkowitz, RI, et al. (2008) Beverage consumption patterns of children born at different risk of obesity. Obesity (Silver Spring) 16, 18021808.
170. Fiorito, LM, Marini, M, Francis, LA, et al. (2009) Beverage intake of girls at age 5 y predicts adiposity and weight status in childhood and adolescence. Am J Clin Nutr 90, 935942.
171. Huus, K, Brekke, HK & Ludvigsson, JF (2009) Relationship of food frequencies as reported by parents to overweight and obesity at 5 years. Acta Paediatr 98, 139143.
172. Lin, SL, Tarrant, M, Hui, LL, et al. (2012) The role of dairy products and milk in adolescent obesity: Evidence from Hong Kong’s “Children of 1997” birth cohort. PLOS ONE 7, e52575.
173. Gibbons, M, Gilchrist, N, Frampton, C, et al. (2004) The effects of a high calcium dairy food on bone health in pre-pubertal children in New Zealand. Asia Pac J Clin Nutr 13, 341347.
174. DeJongh, ED, Binkley, TL & Specker, BL (2006) Fat mass gain is lower in calcium-supplemented than in unsupplemented preschool children with low dietary calcium intakes. Am J Clin Nutr 84, 11231127.


Type Description Title
Supplementary materials

Dougkas et al. supplementary material
Tables S1-S3

 Word (85 KB)
85 KB

A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents

  • Anestis Dougkas (a1), Suzanne Barr (a2), Sheela Reddy (a3) and Carolyn D. Summerbell (a4)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed