Skip to main content Accessibility help
×
Home

Spline Surfaces over Arbitrary Topological Meshes: Theoretical Analysis and Application

  • Chaoyang Liu (a1) and Xiaoping Zhou (a2)

Abstract

Based on polyhedral splines, some multivariate splines of different orders with given supports over arbitrary topological meshes are developed. Schemes for choosing suitable families of multivariate splines based on pre-given meshes are discussed. Those multivariate splines with inner knots and boundary knots from the related meshes are used to generate rational spline shapes with related control points. Steps for up to C2-surfaces over the meshes are designed. The relationship among the meshes and their knots, the splines and control points is analyzed. To avoid any unexpected discontinuities and get higher smoothness, a heart-repairing technique to adjust inner knots in the multivariate splines is designed.

With the theory above, bivariate C1-quadratic splines over rectangular meshes are developed. Those bivariate splines are used to generate rational C1-quadratic surfaces over the meshes with related control points and weights. The properties of the surfaces are analyzed. The boundary curves and the corner points and tangent planes, and smooth connecting conditions of different patches are presented. The C1–continuous connection schemes between two patches of the surfaces are presented.

Copyright

Corresponding author

*Corresponding author. Email addresses:lcy@zzu.edu.cn (C.-Y. Liu), iexpzhou@zzu.edu.cn (X.-P. Zhou)

References

Hide All
[1]Liang, X.-K.. Rational Qudratic B-spline Interpolation of Function Segments. Computation Mathematics, A Jounal of Chinese University (in Chinese), 2012,01:5260.
[2]Xie, J., Tan, J.-Q. and Li, S.-F.. Quadratic Algebraic Hypobolic B-spline Curves with Weight Parameters. Computation Mathematics, A Jounal of Chinese University (in Chinese), 2011,04:337346.
[3]Jin, L.-B. and Deng, J.-S.. Conversion Between (3,3,1,1) Hierarchical B-splines and Polynomial splines over Hierarchical T-meshes. Computatation Mathematics, A Jounal of Chinese University (in Chinese), 2009,04:330342.
[4]Qin, L. and Guan, L.-T.. Minimal Surfaces Design Based on NURBS. Computatation Mathematics, A Jounal of Chinese University (in Chinese), 2005, S1:175181.
[5]Goodman, T., Polyhedral Splines, in Computation of Curves and Surfaces, Dahmen, W., Gasca, M., and Micchelli, C.A., eds. Kluwer, Dordrecht, 1990, Springer Netherlands. pp: 347382.
[6]Zhang, Y.-C., Da, F.-P. and Song, W.-Z.. Piecewise C 1 Surfaces Based on Bivariate Quartic Box-Splines for Arbitrary Triangular Meshes. Journal of Software, 2006, 17(10): 22112220.
[7]Feng, R.-Z. and Wang, R.-H.. Smooth spline surfaces over arbitrary topological triangular meshes. Journal of Software, 2003, 14(4):830837.
[8]Zhou, R.-R., Zhang, L.-Y., Pang, X.-F. and Zhou, L.-S.. Smooth Piecewise Spline Surfaces over Arbitrary Control Polyhedron. Chinese Journal of Aeronautics, 2001, 14(1):5764.
[9]Liu, C.-Y.. Theory and application of Convex Curves and Surfaces in CAGD. ISBN 90-365-1577-7, Press of University of Twente, 2001.
[10]Liu, C.-Y. and Zhou, X.-P.. Research on Algorithm of Precision Modeling Body Surfaces in Electronic Ray-Tracing Technique. College Mathematics (in Chinese), 2014,30(6):3438.
[11]Traas, C.Practice of Bivariate Quadratic Simplicial Splines, in Computation of Curves and Surfaces, Dahmen, W., Gasca, M., and Micchelli, C.A., eds. Kluwer, Dordrecht, 1990, Springer Netherlands. pp:383422
[12]Xu, W.-Y.. The Construction and Application of the Bivariate Quadratic Splines on Uniform Rectangular Grids. Zhengzhou University, 2014.
[13]X.-J. Zhuang, . The Construction and Application of the Bivariate Quadratic Spline Function Method In the Bezier Trianglar Mesh. Zhengzhou University, 2014.

Keywords

MSC classification

Related content

Powered by UNSILO

Spline Surfaces over Arbitrary Topological Meshes: Theoretical Analysis and Application

  • Chaoyang Liu (a1) and Xiaoping Zhou (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.