[1]
Arun, K. R., Kraft, M., Lukáčová-Medvid’ová, M., and Prasad, P., Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions, J. Comput. Phys., 228 (2009), pp. 565–590.

[2]
Bates, J. R., Semazzi, F. H. M., and Higgins, R. W., Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver, Mon. Wea. Rev., 118 (1990), pp. 1615–1627.

[3]
Block, B. J., Lukáčová-Medvid’ová, M., Virnau, P., and Yelash, L., Accelerated GPU simulation of compressible flow by the discontinuous evolution Galerkin method, Eur. Phys. J. Spec. Top., 210 (2012), pp. 119–132.

[4]
Bollermann, A., Noelle, S., and Lukáčová-Medvid’ová, M., Finite volume evolution Galerkin methods for the shallow water equations with dry beds, Commun. Comput. Phys., 10 (2011), pp. 371–404.

[5]
Butler, D. S., The numerical solution of hyperbolic systems of partial differential equations in three independent variables, Proc. R. Soc. Lond. A., 255 (1960), pp. 232–252.

[6]
Chen, C. G., Li, X. L., Shen, X. S., and Xiao, F., Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids, J. Comput. Phys., 271 (2014), pp. 191–223.

[7]
Chen, C. G. and Xiao, F., Shallow water model on cubed-sphere by multi-moment finite volume method, J. Comput. Phys., 227 (2008), pp. 5019–5044.

[8]
Cockburn, B. and Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199–224.

[9]
Dudzinski, M. and Lukáčová-Medvid’ová, M., Well-balanced bicharacteristic-based scheme for multilayer shallow water flows including wet/dry fronts, J. Comput. Phys.
235 (2013), pp. 82–113.

[10]
Galewsky, J., Scott, R. K., and Polvani, L. M., An initial-value problem for testing numerical models of the global shallow-water equations, Tellus A, 56 (2004), pp. 429–440.

[11]
Giraldo, F. X., Hesthaven, J. S., and Wartburton, T., Nodal high-order discontinuous Galerkin methods for the shallow water equations, J. Comput. Phys., 181 (2002), pp. 499–525.

[12]
Giraldo, F. X. and Warburton, T., A nodal triangle-based spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 207 (2005), pp. 129–150.

[13]
Giraldo, F. X. and Warburton, T., A high-order triangular discontinuous Galerkin oceanic shallow water model, Int. J. Numer. Meth. Fluids, 56 (2008), pp. 899–925.

[14]
Huang, L. C., Conservative bicharacteristic upwind schemes for hyperbolic conservation laws II, Comput. Math. Appl., 29 (1995), pp. 91–107.

[15]
Hundertmark-Zauškova, A., Lukáčová-Medvid’ová, M., and Prill, F., Large time step finite volume evolution Galerkin methods, J. Sci. Comput.
48 (2011), pp. 227–240.

[16]
Jakob-Chien, R., Hack, J. J., and Williamson, D. L., Spectral transform solutions to the shallow water test set, J. Comput. Phys., 119 (1995), pp. 164–187.

[17]
Johnston, R. L. and Pal, S. K., The numerical solution of hyperbolic systems using bicharacteristics, Math. Comput., 26 (1972), pp. 377–392.

[18]
Kageyama, A. and Sato, T., The Yin-Yang grid: An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5 (2004), pp. Q09005.

[19]
Läuter, M., Giraldo, F.X., Handorf, D., and Dethloff, K., A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates, J. Comput. Phys., 227 (2008), pp. 10226–10242.

[20]
Läuter, M., Handorf, D., and Dethloff, K., Unsteady analytical solutions of the spherical shallow water equations, J. Comput. Phys., 210 (2005), pp. 535–553.

[21]
Lee, J. L. and Macdonald, A. E., A finite-volume icosahedral shallow-water model on a local coordinates, Mon. Wea. Rev., 137 (2009), pp. 1422–1437.

[22]
Li, X. L., Chen, D. H., Peng, X. D., Takahashi, K., and Xiao, F., A multimoment finite volume shallow-water model on the Yin-Yang overset spherical grid, Mon. Wea. Rev., 136 (2008), pp. 3066–3086.

[23]
Li, X. L., Shen, X. S., Peng, X. D., Xiao, F., Zhuang, Z. R., and Chen, C. G., Fourth order transport model on Yin-Yang grid by multi-moment constrained finite volume scheme, Proc. Comput. Sci., 9 (2012), pp. 1004–1013.

[24]
Lin, S. J. and Rood, R. B., An explicit flux-form semi-Lagrangian shallow-water model on th sphere, Quart. J. Roy. Meteor. Soc., 123 (1997), pp. 2477–2498.

[25]
Lukáčová-Medvid’ová, M. and Morton, K.W., Finite volume evolution Galerkin methods–A survey, Indian J. Pure Appl. Math., 41 (2010), pp. 329–361.

[26]
Lukáčová-Medvid’ová, M., Morton, K.W., and Warnecke, G., Finite volume evolution Galerkin methods for Euler equations of gas dynamics, Int. J. Numer. Meth. Fluids, 40 (2002), pp. 425–434.

[27]
Lukáčová-Medvid’ová, M., Morton, K.W., and Warnecke, G., Evolution Galerkin methods for hyperbolic systems in two space dimensions, Math. Comput., 69 (2000), pp. 1355–1384.

[28]
Lukáčová-Medvid’ová, M., Morton, K. W., and Warnecke, G., Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM. J. Sci. Comput., 26 (2004), pp. 1–30.

[29]
Lukáčová-Medvid’ová, M., Noelle, S., and Kraft, M., Well-balanced finite volume evolution Galerkin methods for the shallow water problems, J. Comput. Phys., 221 (2007), pp. 122–147.

[30]
Lukáčová-Medvid’ová, M., Saibertová, J., and Warnecke, G., Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comput. Phys., 183 (2002), 533–562.

[31]
McDonald, A. and Bates, J. R., Semi-Lagrangian integration of a gridpoint shallow water model on the sphere, Mon. Wea. Rev., 117 (1989), pp. 130–137.

[32]
Morton, K. W., On the analysis of finite volume methods for evolutionary problems, SIAM J. Numer. Anal., 35 (1998), pp. 2195–2222.

[33]
Nair, R. D. and Machenhauer, B., The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere, Mon. Wea. Rev., 130 (2002), pp. 649–667.

[34]
Nair, R. D., Thomas, S. J., and Loft, R. D., A discontinuous Galerkin transport scheme on the cubed sphere, Mon. Wea. Rev., 133 (2005), pp. 814–828.

[35]
Nair, R. D., Thomas, S. J., and Loft, R. D., A discontinuous Galerkin global shallow water model, Mon. Wea. Rev., 133 (2005), pp. 876–888.

[36]
Pudykiewicz, J. A., On numerical solution of the shallow water equations with chemical reactions on icosahedral geodesic grid, J. Comput. Phys., 230 (2011), pp. 1956–1991.

[37]
Putman, W. M. and Lin, S. J., Finite-volume transport on various cubed-sphere grid, J. Comput. Phys., 227 (2007), pp. 55–78.

[38]
Ronchi, C., Iacono, R., and Paolucci, P. S., The cubed sphere: A new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys, 124 (1996), pp. 93–114.

[39]
Sadourny, R., Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Mon. Wea. Rev., 100 (1972), pp. 136–144.

[40]
Shao, S. H. and Tang, H. Z., Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model, Dis. Cont. Dyn. Sys. B, 6(2006), pp. 623–640.

[41]
Shu, C.-W., Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 1073–1084.

[42]
St-Cyr, A., Jablonowski, C., Dennis, J. M., Tufo, H. M., and Thomas, S. J., A comparison of two shallow-water models with non-conforming adaptive grids, Mon. Wea. Rev., 136 (2008), pp. 1898–1922.

[43]
Sun, Y. T. and Ren, Y. X., The finite volume local evolution Galerkin method for solving the hyperbolic conservation laws, J. Comput. Phys., 228 (2009), pp. 4945–4960.

[44]
Taylor, M., Tribbia, J., and Iskandarani, M., The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130 (1997), pp. 92–108.

[45]
Thomas, S. J. and Loft, R. D., Semi-implicit spectral element model, J. Sci. Comput., 17 (2002), pp. 339–350.

[46]
Thomas, S. J. and Loft, R. D., The NCAR spectral element climate dynamical core: semi-implicit Eulerian formulation, J. Sci. Comput., 25 (2005), pp. 307–322.

[47]
Thuburn, J., A PV-based shallow-water model on a hexagonal-icosahedral grid, Mon. Wea. Rev., 125 (1997), pp. 2328–2347.

[48]
Tomita, H., Tsugawa, M., Satoh, M., and Goto, K., Shallow-water model on a modified icosahedral geodesic grid by using spring dynamics, J. Comput. Phys., 174 (2001), pp. 579–613.

[49]
Ullrich, P. A., Jablonowski, C., and Van Leer, B., High-order finite-volume methods for the shallow water equations on the sphere, J. Comput. Phys., 229 (2010), pp. 6104–6134.

[50]
Williamson, D. L., Drake, J. B.
Hack, J. J., Jakob, R., and Swarztrauber, P. N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102 (1992), pp. 211–224.

[51]
Wu, K. L. and Tang, H. Z., Finite volume local evolution Galerkin method for two-dimensional special relativistic hydrodynamics, J. Comput. Phys., 256 (2014), pp. 277–307.

[52]
Yang, C., Cao, J. W., and Cai, X. C., A fully implicit domain decomposition algorithm for shallow water equations on the cubed-sphere, SIAM J. Sci. Comput., 32 (2010), pp. 418–438.

[53]
Yelash, L., Müller, A., Lukáčová-Medvid’ová, M., Giraldo, F. X., and Wirth, S. V., Adaptive discontinuous evolution Galerkin method for dry atmospheric flow, J. Comput. Phys., 268 (2014), pp. 106–133.

[54]
Zhao, J. and Tang, H. Z., Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics, J. Comput. Phys., 242 (2013), pp. 138–168.