Skip to main content Accessibility help
×
Home

Positivity-Preserving Runge-Kutta Discontinuous Galerkin Method on Adaptive Cartesian Grid for Strong Moving Shock

  • Jianming Liu (a1) (a2), Jianxian Qiu (a3), Mikhail Goman (a2), Xinkai Li (a2) and Meilin Liu (a4)...

Abstract

In order to suppress the failure of preserving positivity of density or pressure, a positivity-preserving limiter technique coupled with h-adaptive Runge-Kutta discontinuous Galerkin (RKDG) method is developed in this paper. Such a method is implemented to simulate flows with the large Mach number, strong shock/obstacle interactions and shock diffractions. The Cartesian grid with ghost cell immersed boundary method for arbitrarily complex geometries is also presented. This approach directly uses the cell solution polynomial of DG finite element space as the interpolation formula. The method is validated by the well documented test examples involving unsteady compressible flows through complex bodies over a large Mach numbers. The numerical results demonstrate the robustness and the versatility of the proposed approach.

Copyright

Corresponding author

*Corresponding author. Email address: jxqiu@xmu.edu.cn (J.-X. Qiu)

References

Hide All
[1]Yang, G., Causon, D. M., Ingram, D. M., Saunders, R., and Batten, P., A Cartesian cut cell method for compressible flows Part A: static body problems, Aeronaut. J., vol. 101 (1997), pp. 4756.
[2]Sjögreen, B. and Petersson, N, A Cartesian embedded boundary method for hyperbolic conservation laws, Commun. Comput. Phys., vol. 2 (2007), pp. 11991219.
[3]Forrer, H. and Jeltsch, R., A higher-order boundary treatment for Cartesian-grid methods, J. Comput. Phys., vol. 140 (1998), pp. 259277.
[4]Dadone, A. A and Grossman, B., Ghost-cell method for inviscid two-dimensional flows on Cartesian grids, AIAA J., vol. 42 (2004), pp. 24992507.
[5]Liu, J. M., Zhao, N., and Hu, O., The ghost cell method and its applications for inviscid compressible flow on adaptive tree Cartesian grids, Adv. Appl. Math. Mech., vol. 1 (2009), pp. 664–82.
[6]Ji, H., Lien, F. S., and Yee, E., A robust and efficient hybrid cut-cell/ghost-cell method with adaptive mesh refinement for moving boundaries on irregular domains, Comput. Methods Appl. Mech. Engrg, 198 (2008), pp. 432–48.
[7]Berger, M. J., Helzel, C., and Leveque, R. J., H-box methods for the approximation of hyperbolic conservation laws on irregular grids, SIAM J. Numer. Anal., vol. 41 (2003), pp.893918.
[8]Helzel, C., Berger, M. J., and Leveque, R. J., A high-resolution rotated grid method for conservation laws with embedded geometries, SIAM J. Sci. Comput., vol. 26 (2005), pp.785809.
[9]Colella, P., Graves, D. T., Keen, B. J., and Modian, D., A Cartesian grid embedded boundary method for hyperbolic conservation laws, J. Comput. Phys., vol. 211 (2006), pp.347366.
[10]Sambasivan, S. K and Udaykumar, H. S., Ghost fluid method for strong shockinter actions Part 2: Immersed solid boundaries, AIAA J. vol. 47 (2009), pp. 29232937.
[11]Chaudhuri, A., Hadjadj, A., and Chinnayya, A., On the use of immersed boundary methods for shock/obstacle interactions, J. Comput. Phys., vol. 230 (2011), pp. 17311748.
[12]Liu, J. M., Qiu, J. X., Zhao, N., Hu, O., Goman, M., and Li, X. K., Adaptive Runge-Kutta discontinuous Galerkin method for complex geometry problems on Cartesian grid, Int. J. Numer. Meth. Fluids, vol. 73 (2013), pp. 847868.
[13]Zhang, X. and Shu, C.-W, On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., vol.229 (2010), pp. 89188934.
[14]Zhang, X. and Shu, C.-W, Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms, J. Comput. Phys., vol. 230 (2011), pp.12381248.
[15]Zhang, X., Xia, Y., and Shu, C.-W., Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes, J. Sci. Comput., vol. 50 (2012), pp. 2962.
[16]Wang, C., Zhang, X., Shu, C.-W., and Ning, J. G., Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations, J. Comput. Phys., vol. 231 (2012), pp. 653665.
[17]Kotov, D. V., Yee, H. C., and Sjögreen, B., Comparative study on high-order positivity-preserving WENO schemes, ARC-E-DAA-TN8768, SIAM Conference on Numerical Combustion, San Antonio, TX, USA, April 8th-10th, 2013.
[18]Kontzialis, K. and Ekaterinaris, J. A., High order discontinuous Galerkin discretizations with a new limiting approach and positivity preservation for strong moving shocks, Comput Fluids, vol. 71 (2013), pp. 98112.
[19]Kim, S. D., Lee, B. J., Lee, H. J., and Jeung, I. S., Robust HLLC Riemann solver with weighted average flux scheme for strong shock, J. Comput. Phys., vol. 228 (2009), pp.76347642.
[20]Cockburn, B. and Shu, C.-W, The Runge-Kutta local projection P1-discontinuous finite element method for scalar conservation laws, Math. Model Numer. Anal., vol. 25 (1991), pp. 337361.
[21]Cockburn, B. and Shu, C.-W, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework, Math. Comp., vol. 52 (1989), pp. 411435.
[22]Cockburn, B. and Shu, C.-W, The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems, J. Comput. Phys., vol. 141 (1998), pp. 199224.
[23]Cockburn, B., Lin, S. Y., and Shu, C.-W, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems, J. Comput. Phys., vol. 84 (1989), pp. 90113.
[24]Cockburn, B., Hou, S., and Shu, C.-W, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comp., vol. 54 (1990), pp. 545581.
[25]Shu, C.-W and Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., vol. 77 (1988), pp. 439471.
[26]Berg, M., Cheong, O., Kreveld, M., and Overmars, M., Computational Geometry: Algorithms and Applications, Springer-Verlag, Berlin Heidelberg, 2008.
[27]Cecil, T., Osher, S., and Qian, J., Essentially non-oscillatory adaptive tree methods, J. Sci. Comput., vol. 35 (2008), pp. 2541.
[28]Zhu, H. Q. and Qiu, J. X., An h-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws, Adv. Comput. Math., vol. 39 (2013), pp. 445463.
[29]Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Berlin Heidelberg, Springer, 1999.
[30]Toro, E. F., Spruce, M., and Speares, W., Restoration of the contact surface in the HLL Riemann solver, Shock Waves, vol. 4 (1994), pp. 2534.
[31]Harten, A., Lax, P. D., and Van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., vol. 25 (1983), pp. 3561.
[32]Batten, P., Clarke, N., Lambert, C., and Causon, D. M., On the choice ofwavespeedsfor the HLLC Riemann solver, SIAM J. Sci. Comput., vol. 18 (1997), pp. 15531570.
[33]Wang, D. H., Zhao, N., Hu, O., and Liu, J. M., A ghost fluid based front tracking method for multimedium compressible flows, Acta. Math. Sci., vol. 29 (2009), pp. 16291646.
[34]Krivodonova, L., Xin, J., Remacle, J. F., Chevaugeon, N., and Flaherty, J. E., Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Appl. Numer. Math., vol. 48 (2004), pp. 323338.
[35]De Zeeuw, D., A Quadtree-Based Adaptively-Refined Cartesian-Grid Algorithm for Solution of the Euler Equations, PhD Thesis, University of Michigan, 1993.
[36]Hu, X. Y., Adams, N. A., and Shu, C.-W, Positivity-preserving method for high-order conservative schemes solving compressible Euler equations, J. Comput. Phys., vol. 242 (2013), pp. 169180.
[37]Lee, J. and Ruffin, S. M., Development of a Turbulent Wall-Function Based Viscous Cartesian-Grid Methodology, AIAA Paper 07-1326. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007.

Keywords

MSC classification

Positivity-Preserving Runge-Kutta Discontinuous Galerkin Method on Adaptive Cartesian Grid for Strong Moving Shock

  • Jianming Liu (a1) (a2), Jianxian Qiu (a3), Mikhail Goman (a2), Xinkai Li (a2) and Meilin Liu (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed