Skip to main content Accessibility help
×
Home

One-Bit Compressed Sensing by Greedy Algorithms

  • Wenhui Liu (a1), Da Gong (a1) and Zhiqiang Xu (a1)

Abstract

Sign truncated matching pursuit (STrMP) algorithm is presented in this paper. STrMP is a new greedy algorithm for the recovery of sparse signals from the sign measurement, which combines the principle of consistent reconstruction with orthogonal matching pursuit (OMP). The main part of STrMP is as concise as OMP and hence STrMP is simple to implement. In contrast to previous greedy algorithms for one-bit compressed sensing, STrMP only need to solve a convex and unconstrained subproblem at each iteration. Numerical experiments show that STrMP is fast and accurate for one-bit compressed sensing compared with other algorithms.

Copyright

Corresponding author

*Corresponding author. Email addresses: liuwenhui11@mails.ucas.ac.cn (W. -H. Liu), gongda@lsec.cc.ac.cn (D. Gong), xuzq@lsec.cc.ac.cn (Z. -Q. Xu)

References

Hide All
[1]Barzilai, J., and Borwein, J. M., Two-Point Step Size Gradient Methods, IMA Journal of Numerical Analysis, vol. 8, no. 1 (1988), pp. 141148.
[2]Blumensath, T., and Davies, M. E., Iterative Hard Thresholding for Compressed Sensing, Applied and Computational Harmonic Analysis, vol. 27, no. 3 (2009), pp. 265274.
[3]Boufounos, P. T., Greedy Sparse Signal Reconstruction from Sign Measurements, Asilomar Conference on Signals, Systems and Computers, 2009, pp. 13051309.
[4]Boufounos, P. T., and Baraniuk, R. G., 1-Bit Compressive Sensing, Proceedings of the 42nd Annual Conference on Information Sciences and Systems (CISS), 2008, pp. 1621.
[5]Candes, E. J., and Romberg, J. K., and Tao, T., Stable Signal Recovery from Incomplete and Inaccurate Measurements, Communications on Pure and Applied Mathematics, vol. 59, no. 8 (2006), pp. 12071223.
[6]Candes, E. J., and Tao, T., Decoding by Linear Programming, IEEE Transactions on Information Theory, vol. 51, no. 12 (2005), pp. 42034215.
[7]Donoho, D. L., Compressed Sensing, IEEE Transactions on Information Theory, vol. 52, no. 4 (2006), pp. 12891306.
[8]Jacques, L., Laska, J. N., and Boufounos, P. T., and Baraniuk, Richard G., Robust 1-Bit Compressive Sensing Via Binary Stable Embeddings of Sparse Vectors, IEEE Transactions on Information Theory, vol. 59, no. 4 (2013), pp. 20822102.
[9]Laska, J. N., Wen, Z., Yin, W.-T., and Baraniuk, R. G., Trust, But Verify: Fast and Accurate Signal Recovery from 1-Bit Compressive Measurements, IEEE Transactions on Signal Processing, vol. 59, no. 11 (2011), pp. 52895301.
[10]Plan, Y., and Vershynin, R., One-Bit Compressed Sensing by Linear Programming, Communications on Pure and Applied Mathematics, vol. 66, no. 8 (2013), pp. 12751297.
[11]Vershynin, R., Introduction to The Non-Asymptotic Analysis of Random Matrices, Compressed Sensing: Theory and Applications, in Eldar, Yonina C., and Kutyniok, Gitta editors, Cambridge University Press, 2012, pp. 210268.
[12]Yan, M., Yang, Y., and Osher, S.J., Robust 1-Bit Compressive Sensing Using Adaptive Outlier Pursuit, IEEE Transactions on Signal Processing, vol. 60, no. 7 (2012), pp. 38683875.
[13]Zhang, T., Sparse Recovery with Orthogonal Mathching Pursuit under RIP, IEEE Transactions on Information Theory, vol. 57, no. 9 (2011), pp. 62156221.
[14]Tropp, J. A., Greed Is Good: Algorithmic Results for Sparse Approximation, IEEE Transactions on Information Theory, vol. 50, no. 10 (2004), pp. 22312242.
[15]Needell, D., and Tropp, J. A., CoSaMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples, Applied and Computational Harmonic Analysis, vol. 26, no. 3 (2009), pp. 301321.
[16]Needell, D., and Vershynin, R., Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit, Foundations of Computational Mathematics, vol. 9, no. 3 (2009), pp. 317334.
[17]DAI, W., and Milenkovic, O., Subspace Pursuit for Compressive Sensing Signal Reconstruction, IEEE Transactions on Information Theory, vol. 55, no. 5 (2009), pp. 22302249.
[18]Wang, Y., and Xu, Z.-Q., The performance of PCM quantization under tight frames representations, SIAM J. MATH. ANAL., vol. 44, no. 4 (2012), pp. 28022823.
[19]Xu, Z.-Q., The Performance of OrthogonalMulti-Matching Pursuit under the Restricted Isometry Property, J. Comp. Math., 33 (2015), pp. 495516.

Keywords

Related content

Powered by UNSILO

One-Bit Compressed Sensing by Greedy Algorithms

  • Wenhui Liu (a1), Da Gong (a1) and Zhiqiang Xu (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.