[1]Huang, Y. Q. and Li, J. and Yang, W., Interior penalty DG methods for Maxwell's equations in dispersive media, J. Comput. Phys., 230:12 (2011), pp. 4559–4570.

[2]Monk, P., A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal., 28:6 (1999), pp. 1610–1634.

[3]Monk, P., A comparison of three mixed methods for the time-dependent Maxwell's equations, SIAM J. Sci. Statist. Comput., 13:5 (1992), pp. 1097–1122.

[4]Monk, P., Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal., 29:3 (1992), pp. 714–729.

[5]Monk, P., A finite element method for approximating the time-harmonic Maxwell equations, Numer. Math., 63:2 (1992), pp. 243–261.

[6]Monk, P., A comparison of three mixed methods for the time-dependent Maxwell's equations, SIAM J. Sci. Statist. Comput., 13:5(1992), pp. 1097–1122.

[7]Monk, P., Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.

[8]Monk, P. and Suli, Endre, A convergence analysis of Yee's scheme on nonuniform grids, SIAM J. Numer. Anal., 31:2(1994), pp. 393–412.

[9]Nédélec, J.-C., Mixed finite element in 3D in H(div) and H(curl), Lecture Notes in Math., 1192(1986), pp. 321–325.

[10]Nédélec, J.-C., A new family of mixed finite elements in **R**^{3}, Numer. Math., 50:1(1986), pp. 57–81.

[11]Bonnet, A.-S., Dhia, B., Hazard, C. and Lohrengel, S., A sigular field method for the solution of Maxwell's equations in polyhedral domains, SIAM J. Appl. Math., 59(1999), pp. 2028–2044.

[12]Hazard, C. and Lenoir, M., On the solution of time-harmonic scattering problems for Maxwell's equations, SIAM J. Math. Anal., 27(1996), pp. 1559–1630.

[13]Duan, H. Y., Jia, F., Lin, P. and Roger Tan, C. E., The Local L2 Projected C0 Finite Element Method for Maxwell Problem, SIAM J. Numer. Anal., 47:2(2009), pp,1274–1303.

[14]Brenner, S. C., Li, F. and Sung, L.-Y., A local divergence-free interior penalty method for two-dimensional curl-curl problem, SIAM J. Numer. Anal., 46:3 (2008), pp, 1190–1211.

[15]Brenner, S. C., Cui, J., Li, F. and Sung, L.-Y., A nonconforming finite element method for a two-dimensional curlCcurl and grad-div problem, Numer. Math., 109 (2008), pp,509–533.

[16]Brenner, S. C., Li, F. and Sung, L.-Y., A locally divergence-free nonconforming finite element method for the time-harmonic maxwell equations, Math. Comp., 76:258 (2007), pp, 573–595.

[17]Li, J., Error analysis of finite element methods for 3-D Maxwell's equations in dispersive media, J. Comput. Appl. Math., 188:1 (2006), pp, 107–120.

[18]Li, J. and Chen, Y., Analysis of a time-domain finite element method for 3-D Maxwell's equations in dispersive media, Comput. Methods Appl. Mech. Engrg., 195:33-36, (2006), pp, 4220–4229.

[19]Li, J. and Wood, A. H., Finite element analysis for wave propagation in double negative metamaterials, J. Sci. Comput., 32:2 (2007), pp, 263–286.

[20]Ciarlet, P. Jr., Garcia, E. and Zou, J., Solving Maxwell equations in 3D prismatic domains, C. R. Math. Acad. Sci., 339:10(2004), pp, 721–726.

[21]Chen, J., Xu, Y. and Zou, J., Convergence analysis of an adaptive edge element method for Maxwell's equations, Appl. Numer. Math., 59:12(2009), pp, 2950–2969.

[22]Chen, J., Xu, Y. F. and Zou, J., An adaptive inverse iteration for Maxwell eigenvalue problem based on edge elements, J. Comput. Phys., 229:7(2010), pp, 2649–2658.

[23]Shi, D. Y. and Pei, L. F., Low order Crouzeix-Raviart type nonconforming finite element methods for approximating Maxwell's equations, Int. J. Numer. Anal. Model., 5:3(2008), pp, 373–385.

[24]Shi, D. Y. and Pei, L. F., Low order Crouzeix-Raviart type nonconforming finite element methods for the 3D time-dependent Maxwell's equations, Appl. Math. Comput., 211:1(2009), pp, 1–9.

[25]Shi, D. Y., Pei, L. F. and Chen, S.C., A nonconforming arbitrary quadrilateral finite element method for approximating Maxwell's equations, Numer. Math. J. Chin. Univ. (Engl. Ser.), 16:4(2007), pp, 289–299.

[26]Qiao, Z., Yao, C.H. and Jia, S.J., Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-harmonic Maxwell's equations, J. Sci. Comput., 46:1 (2011), pp 1–19.

[27]Qiao, Z., Numerical Investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system, Commun. Comput. Phys., 3 (2008), pp, 406–426.

[28]Qiao, Z., Zhang, Z. and Tang, T., An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput., 33 (2011), pp, 1395–1414.

[29]Santos, J. E. and Sheen, D., On the existence and uniqueness of solutions to Maxwell’s equations in bounded domains with application to magnetotellurics, Math. Models Methods Appl. Sci., 10:4 (2000), pp, 593–613.

[30]Feng, X., Absorbing boundary conditions for electromagnetic wave propagation, Math. Comp., 68:225 (1999), pp, 145–168.

[31]Namiki, T., A new FDTD algorithm based on alternating direction implicit method, Microwave Theory and Techniques IEEE Transactions on, 47:10 (1999), pp, 2003–2007.

[32]Mackie, R. L., Madden, T. R. and Wannamaker, P. E., A 3-Dimensinal magnetotelluric modeling using difference-equations -theorem and comparisions to integral-equation solutions, Geophysics, 58:2 (1993), pp, 215–226.

[33]Yee, K. S., Numerical solution of inital boundary value problem involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propagat., 14 (1996), pp, 302–307.