[1]Yuang, G. W., Hang, X. D., Sheng, Z. Q. and Yue, J. Y., Progress in numerical methods for radiation diffusion equations, Chinese J. Comput. Phys., 26 (2009), pp. 475–500.

[2]Samarskii, A. A., Introduction to the Theory of Difference Schemes, Moscow, Nauka, 1971, in Russian.

[3]Shashkov, M. and Steinberg, S., Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys., 129 (1996), pp. 383–405.

[4]Zhu, S. H., Yuang, G. W. and Sun, W. W., Convergence and stability of explicit/implicit schemes for parabolic equations with discontinuous coefficients, Int. J. Numer. Anal. Model., 1 (2004), pp. 131–146.

[5]Sinha, R. H. and Deka, B., Optimal error estimates for linear parabolic problems with discontinuous coefficients, SIAM J. Numer. Anal., 43 (2005), pp. 733–749.

[6]Huang, H. X. and Li, Z. L., Convergence analysis of the immersed interface method, IMA J. Numer. Anal., 19 (1999), pp. 583–608.

[7]Ewing, R. E., Li, Z. L., Lin, T. and Lin, Y. P., The immersed finite volume element methods for the elliptic interface problems, Math. Comput. Simulation, 50 (1999), pp. 63–76.

[8]Li, Z., Lin, T., Lin, Y. and Rogers, R. C., An immersed finite element space and its approximation capability, Numer. Methods Part. Diff. Eq., 20 (2004), pp. 338–367.

[9]Reed, W. H. and Hill, T. R., Triangular mesh methods for the neutron transport equation, Los Alamos Scienfic Laboratory Report, LA-UR-73-479, 1973.

[10]Cockburn, B. and Shu, C., TVB Runge-Kutta local projection discontinuous Galerkin finite element methods for conservation laws II: general framework, Math. Comput., 52 (1989), pp. 411–435.

[11]Cockburn, B., Lin, S. Y. and Shu, C., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, J. Comput. Phys., 84 (1989), pp. 90–113.

[12]Cockburn, B. and Shu, C., TVB Runge-Kutta local projection discontinuous Galerkin finite element methods for conservation laws IV: the multidimensional case, Math. Comput.,54 (1990), pp. 545–581.

[13]Cockburn, B. and Shu, C., TVB Runge-Kutta local projection discontinuous Galerkin finite element methods for conservation laws V: multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199–224.

[14]Cockburn, B. and Shu, C., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), pp. 2440–2463.

[15]Gassner, G., Lörcher, F. and Munz, C. A., A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes, J. Comput. Phys., 224 (2007), pp. 1049–1063.

[16]Lörcher, F., Gassner, G. and Munz, C. A., An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, J. Comput. Phys., 227 (2008), pp. 5649–5670.

[17]Liu, H. L. and Yan, J., The direct discontinuous Galerkin (DDG) methods for diffusion problems, SIAM J. Numer. Anal., 47 (2009), pp. 475–698.

[18]Liu, H. L. and Yan, J., The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections, Commun. Comput. Phys., 3 (2010), pp. 541–564.

[19]Pietro, D. A. and Ern, A., Analysis of a discontinuous Galerkin method for heterogeneous diffusion problems with low-regularity solutions, Numer. Methods Part. Diff. Eq., Published online, DOI: 10.1002/num.20675.

[20]Ern, A., Stephansen, A. and Zunino, P, A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity, IMA J. Numer. Anal., 29 (2009), pp. 235–256.

[21]Ern, A. and Stephansen, A., A posteriori energy-norm error estimates for discontinuous Galerkin method with weighted averages for advection-diffusion equations approximated by weighted interiori penalty methods, J. Comput. Math., 26 (2008), pp. 488–510.

[22]Cai, Z. Q., Ye, X. and Zhang, S., Discontinuous Galerkin finite element methods for interface problems: apriori and a posteriori error estimations, SIAM J. Numer. Anal., to appear.

[23]Shu, C. and Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.