[1]Ahn, H., Vibration of a pendulum consisiting of a bob suspended from a wire, Quart. Appl. Math., 39 (1981), pp. 109–117.

[2]Andreev, A. B., Lazarov, R. D. and Racheva, M. R., Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems, J. Comput. Appl. Math., 182 (2005), pp. 333–349.

[3]Babuška, I. and Osborn, J. E., Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp. 52 (1989), pp. 275–297.

[4]Babuška, I. and Osborn, J., Eigenvalue Problems, In Handbook of Numerical Analysis, Vol. II, (Eds. Lions, P. G. and Ciarlet, P.G.), Finite Element Methods (Part 1), North-Holland, Amsterdam, pp. 641–787, 1991.

[5]Bergman, S. and Schiffer, M., Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, New York, 1953.

[6]Bermudez, A., Rodriguez, R. and Santamarina, D., A finite element solution of an added mass formulation for coupled fluid-solid vibrations, Numer. Math., 87 (2000), pp. 201–227.

[7]Bi, H. and Yang, Y., A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem, Appl. Math. Comput., 217 (2011), pp. 9669–9678.

[8]Bi, H. and Yang, Y., Multiscale discretization scheme based on the Rayleigh quotient iterative method for the Steklov eigenvalue problem, Mathematical Problems in Engineering, (2012), Article Number: 487207, Doi: 10.1155/2012/487207.

[9]Bramble, J. and Osborn, J., Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, in: Aziz, A., (Ed.), Math. Foundations of the Finite Element Method with Applications to PDE, Academic, New York, pp. 387–408, 1972.

[10]Brenner, S. and Scott, L., The Mathematical Theory of Finite Element Methods, New York: Springer-Verlag, 1994.

[11]Bucur, D. and Ionescu, I., Asymptotic analysis and scaling of friction parameters, Z. Angew. Math. Phys. (Zamp), 57 (2006), pp. 1–15.

[12]Chatelin, F., Spectral Approximation of Linear Operators, Academic Press Inc, New York, 1983.

[13]Chen, H., Jia, S. and Xie, H., Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems, Appl. Math., 54(3) (2009), pp. 237–250.

[14]Ciarlet, P., The finite Element Method for Elliptic Problem, North-holland Amsterdam, 1978.

[15]Conca, C., Planchard, J. and Vanninathanm, M., Fluid and Periodic Structures, John Wiley & Sons, New York, 1995

[16]Crouzeix, M. and Raviart, P., Conforming and nonconforming finite element for solving the stationary Stokes equations, Rairo Anal. Numer., 3 (1973), pp. 33–75.

[17]Grisvard, P., Singularities in Boundary Value Problems, Masson and Springer-Verlag, 1985.

[18]Hinton, D. and Shaw, J., Differential operators with spectral parameter incompletely in the boundary conditions, Funkcialaj Ekvacioj (Serio Internacial), 33, pp. 363–385, 1990.

[19]Hu, X. and Cheng, X., Acceleration of a two-grid method for eigenvalue problems, Math. Comp., 80(275) (2011), pp. 1287–1301.

[20]Hu, J., Huang, Y. and Lin, Q., TLower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods, J. Sci. Comput., (2014): Doi: 10.1007/S10915-014-9821-5.

[21]Li, Q., Lin, Q., Xie, H., Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations, Appl. Math., 58(2) (2013), pp. 129–151.

[22]Li, Q. and Yang, Y., A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput., 36 (2011), pp. 129–139

[23]Lin, Q. and Xie, H., The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods, Mathematics in Practice and Theory, 42(11) (2012), pp. 219–226.

[24]Lin, Q., Xie, H., Luo, F., Li, Y., and Yang, Y., Stokes eigenvalue approximation from below with nonconforming mixed finite element methods, Math. in Practice and Theory, 19 (2010), pp. 157–168.

[25]Lin, Q. and Lin, J., Finite Element Methods: Accuracy and Improvement, China Sci. Tech. Press, 2005. 1995.

[26]Luo, F., Lin, Q. and Xie, H., Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods, Sci. China. Math., 55 (2012), pp. 1069–1082.

[27]Racheva, M. R. and Andreev, A. B., Superconvergence postprocessing for Eigenvalues, Comp. Methods in Appl. Math., 2(2) (2002), pp. 171–185.

[28]Xu, J., Iterative methods by space decomposition and subspace correction, Siam Review, 34(4) (1992), pp. 581–613.

[29]Xu, J., A new class of iterative methods for nonselfadjoint or indefinite problems, Siam J. Numer. Anal., 29 (1992), pp. 303–319.

[30]Xu, J., A novel two-grid method for semilinear elliptic equations, Siam J. Sci. Comput., 15 (1994), 231–237.

[31]Xu, J. and Zhou, A., A two-grid discretization scheme for eigenvalue problems, Math. Comput., 70(233) (2001), pp. 17–25.

[32]Xu, J. and Zhou, A., Local and parallel finite element algorithm for eigenvalue problems, Acta Math. Appl. Sin. Engl. Ser., 18(2) (2002), pp. 185–200.

[33]Yang, Y. and Chen, Z., The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators, Science in China Series A, 51(7) (2008), pp. 1232–1242.

[34]Yang, Y. and Bi, H., Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems, 49(20) (2011), Siam J. Numer. Anal., pp. 1602–1624.

[35]Zhou, A., Multilevel adaptive corrections in finite dimensional approximations, J. Comp. Math., 28(1) (2010), pp. 45–54.