Skip to main content Accessibility help

A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods

  • Xiaole Han (a1), Yu Li (a2) and Hehu Xie (a3)


In this paper, a multilevel correction scheme is proposed to solve the Steklov eigenvalue problem by nonconforming finite element methods. With this new scheme, the accuracy of eigenpair approximations can be improved after each correction step which only needs to solve a source problem on finer finite element space and an Steklov eigenvalue problem on the coarsest finite element space. This correction scheme can increase the overall efficiency of solving eigenvalue problems by the nonconforming finite element method. Furthermore, as same as the direct eigenvalue solving by nonconforming finite element methods, this multilevel correction method can also produce the lower-bound approximations of the eigenvalues.


Corresponding author

*Email addresses: (X. Han), (Y. Li), (H. Xie)


Hide All
[1]Ahn, H., Vibration of a pendulum consisiting of a bob suspended from a wire, Quart. Appl. Math., 39 (1981), pp. 109117.
[2]Andreev, A. B., Lazarov, R. D. and Racheva, M. R., Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems, J. Comput. Appl. Math., 182 (2005), pp. 333349.
[3]Babuška, I. and Osborn, J. E., Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp. 52 (1989), pp. 275297.
[4]Babuška, I. and Osborn, J., Eigenvalue Problems, In Handbook of Numerical Analysis, Vol. II, (Eds. Lions, P. G. and Ciarlet, P.G.), Finite Element Methods (Part 1), North-Holland, Amsterdam, pp. 641787, 1991.
[5]Bergman, S. and Schiffer, M., Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, New York, 1953.
[6]Bermudez, A., Rodriguez, R. and Santamarina, D., A finite element solution of an added mass formulation for coupled fluid-solid vibrations, Numer. Math., 87 (2000), pp. 201227.
[7]Bi, H. and Yang, Y., A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem, Appl. Math. Comput., 217 (2011), pp. 96699678.
[8]Bi, H. and Yang, Y., Multiscale discretization scheme based on the Rayleigh quotient iterative method for the Steklov eigenvalue problem, Mathematical Problems in Engineering, (2012), Article Number: 487207, Doi: 10.1155/2012/487207.
[9]Bramble, J. and Osborn, J., Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, in: Aziz, A., (Ed.), Math. Foundations of the Finite Element Method with Applications to PDE, Academic, New York, pp. 387408, 1972.
[10]Brenner, S. and Scott, L., The Mathematical Theory of Finite Element Methods, New York: Springer-Verlag, 1994.
[11]Bucur, D. and Ionescu, I., Asymptotic analysis and scaling of friction parameters, Z. Angew. Math. Phys. (Zamp), 57 (2006), pp. 115.
[12]Chatelin, F., Spectral Approximation of Linear Operators, Academic Press Inc, New York, 1983.
[13]Chen, H., Jia, S. and Xie, H., Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems, Appl. Math., 54(3) (2009), pp. 237250.
[14]Ciarlet, P., The finite Element Method for Elliptic Problem, North-holland Amsterdam, 1978.
[15]Conca, C., Planchard, J. and Vanninathanm, M., Fluid and Periodic Structures, John Wiley & Sons, New York, 1995
[16]Crouzeix, M. and Raviart, P., Conforming and nonconforming finite element for solving the stationary Stokes equations, Rairo Anal. Numer., 3 (1973), pp. 3375.
[17]Grisvard, P., Singularities in Boundary Value Problems, Masson and Springer-Verlag, 1985.
[18]Hinton, D. and Shaw, J., Differential operators with spectral parameter incompletely in the boundary conditions, Funkcialaj Ekvacioj (Serio Internacial), 33, pp. 363385, 1990.
[19]Hu, X. and Cheng, X., Acceleration of a two-grid method for eigenvalue problems, Math. Comp., 80(275) (2011), pp. 12871301.
[20]Hu, J., Huang, Y. and Lin, Q., TLower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods, J. Sci. Comput., (2014): Doi: 10.1007/S10915-014-9821-5.
[21]Li, Q., Lin, Q., Xie, H., Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations, Appl. Math., 58(2) (2013), pp. 129151.
[22]Li, Q. and Yang, Y., A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput., 36 (2011), pp. 129139
[23]Lin, Q. and Xie, H., The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods, Mathematics in Practice and Theory, 42(11) (2012), pp. 219226.
[24]Lin, Q., Xie, H., Luo, F., Li, Y., and Yang, Y., Stokes eigenvalue approximation from below with nonconforming mixed finite element methods, Math. in Practice and Theory, 19 (2010), pp. 157168.
[25]Lin, Q. and Lin, J., Finite Element Methods: Accuracy and Improvement, China Sci. Tech. Press, 2005. 1995.
[26]Luo, F., Lin, Q. and Xie, H., Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods, Sci. China. Math., 55 (2012), pp. 10691082.
[27]Racheva, M. R. and Andreev, A. B., Superconvergence postprocessing for Eigenvalues, Comp. Methods in Appl. Math., 2(2) (2002), pp. 171185.
[28]Xu, J., Iterative methods by space decomposition and subspace correction, Siam Review, 34(4) (1992), pp. 581613.
[29]Xu, J., A new class of iterative methods for nonselfadjoint or indefinite problems, Siam J. Numer. Anal., 29 (1992), pp. 303319.
[30]Xu, J., A novel two-grid method for semilinear elliptic equations, Siam J. Sci. Comput., 15 (1994), 231237.
[31]Xu, J. and Zhou, A., A two-grid discretization scheme for eigenvalue problems, Math. Comput., 70(233) (2001), pp. 1725.
[32]Xu, J. and Zhou, A., Local and parallel finite element algorithm for eigenvalue problems, Acta Math. Appl. Sin. Engl. Ser., 18(2) (2002), pp. 185200.
[33]Yang, Y. and Chen, Z., The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators, Science in China Series A, 51(7) (2008), pp. 12321242.
[34]Yang, Y. and Bi, H., Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems, 49(20) (2011), Siam J. Numer. Anal., pp. 16021624.
[35]Zhou, A., Multilevel adaptive corrections in finite dimensional approximations, J. Comp. Math., 28(1) (2010), pp. 4554.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed