Skip to main content Accessibility help
×
Home

Convergence of an Anisotropic Perfectly Matched Layer Method for Helmholtz Scattering Problems

  • Chao Liang (a1) (a2) and Xueshuang Xiang (a3)

Abstract

The anisotropic perfectly matched layer (APML) defines a continuous vector field outside a rectangle domain and performs the complex coordinate stretching along the vector field. Inspired by [Z. Chen et al., Inverse Probl. Imag., 7, (2013):663–678] and based on the idea of the shortest distance, we propose a new approach to construct the vector field which still allows us to prove the exponential decay of the stretched Green function without the constraint on the thickness of the PML layer. Moreover, by using the reflection argument, we prove the stability of the PML problem in the PML layer and the convergence of the PML method. Numerical experiments are also included.

Copyright

Corresponding author

*Corresponding author. Email addresses:liangchao@lsec.cc.ac.cn (C. Liang), xiangxueshuang@qxslab.cn (X. S. Xiang)

References

Hide All
[1]Bérenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994), 185200.
[2]Bramble, J. H. and Pasciak, J. E., Analysis of a Cartesian PML approximation to acoustic scattering problems in ℝ2 and ℝ3, J. Comput. Appl. Math. 247 (2013), 209230.
[3]Chen, J. and Chen, Z., An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems, Math. Comp. 77 (2008), 673698.
[4]Chen, Z., Cui, T. and Zhang, L., An adaptive anisotropic perfectly matched layer method for 3D time harmonic electromagnetic scattering problems, Numer. Math. 125 (2013), 639677.
[5]Chen, Z., Liang, C. and Xiang, X.An anisotropic perfectly matched layer method for Helmholtz scattering problem with discontinuous wave number, Inverse Probl. Imag. 7 (2013), 663678.
[6]Chen, Z. and Liu, X., An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal. 43 (2005), 645671.
[7]Chen, Z. and Wu, H., An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal. 41 (2003), 799826.
[8]Chen, Z. and Wu, X. M., An adaptive uniaxial perfectly matched layer technique for time-Harmonic Scattering Problems, Numerical Mathematics: Theory, Methods and Applications. 1 (2008), 113137.
[9]Chen, Z. and Xiang, X.A source transfer domain decomposition method for Helmholtz equations in unbounded domain, SIAM J. Numer. Anal. 51 (2013), 23312356.
[10]Chen, Z. and Zheng, W., Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media, SIAM J. Numer. Anal. 48 (2010), 21582185.
[11]Chew, W. C., Waves and Fields in Inhomogeneous Media, Springer, New York, 1990.
[12]Chew, W. C. and Weedon, W., A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microwave Opt. Tech. Lett. 7 (1994), 599604.
[13]Collino, F. and Monk, P. B., The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput. 19 (1998), 20612090.
[14]Colton, D. and Kress, R., Integral Equation Methods in Scattering Theory, Wiley, New York, 1983.
[15]Hohage, T., Schmidt, F., and Zschiedrich, L., Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method, SIAM J. Math. Anal. 35 (2003), 547560.
[16]Kim, S. and Pasciak, J. E., Analysis of a Cartisian PML approximation to acoustic scattering problems in ℝ2, J. Math. Anal. Appl. 370 (2010), 168186.
[17]Lassas, M. and Somersalo, E., On the existence and convergence of the solution of PML equations, Computing. 60 (1998), 229241.
[18]Lassas, M. and Somersalo, E., Analysis of the PML equations in general convex geometry, Proc. Roy. Soc. Eding. 131 (2001), 11831207.
[19]Meza-Fajardo, K. C. and Papageorgiou, A. S., A nonconventional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis, Bulletin Seismological Soc. Am. 98 (2008), 18111836.
[20]McLean, W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Universtiy Press, Cambridge, 2000.
[21]Oskooi, A. F., Zhang, L., Avniel, Y., and Johnson, S. G., The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers, Optical Express. 16 (2008), 1137611392.
[22]Teixeira, F. L. and Chew, W. C., Advances in the theory of perfectly matched layers, In: “Fast and Efficient Algorithms in Computational Electromagnetics” (eds Chew, W. C.et al.), Artech House, (2001), 283346.
[23]Trenev, D. V., Spatial Scaling for the Numerical Approximation of Problems on Unbounded Domains, PhD Thesis, Texas A & M University, 2009.
[24]Turkel, E. and Yefet, A., Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math. 27 (1998), 533557.
[25]Zschiedrich, L., Klose, R., Schödle, A., and Schmidt, F., A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions, J. Comput. Appl. Math. 188 (2006), 1232.

Keywords

MSC classification

Convergence of an Anisotropic Perfectly Matched Layer Method for Helmholtz Scattering Problems

  • Chao Liang (a1) (a2) and Xueshuang Xiang (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed