[1]
Bilger, R.W., Conditional moment closure for turbulent reacting flow, Phys. Fluids A, 5 (1993), pp. 436–444.

[2]
Boffi, D., Finite element approximation of eigenvalue problems, Acta Numer., 19 (2010), pp. 1–120.

[3]
Bourgault, Y., Broizat, D. and Jabin, P.-E., *Convergence rate for the method of moments with linear closure relations*, arXiv:1206.4831v1.

[4]
Cai, Z., Fan, Y. and Li, R., Globally hyperbolic regularization of grad's moment system in one dimensional space, Commun. Math. Sci., 11 (2012), pp. 547–571.

[5]
Cai, Z., Fan, Y. and Li, R., Globally hyperbolic regularization of grad's moment system, Commun. Pure Appl. Math., 67 (2014), pp. 464–518.

[6]
Chorin, A. J., Hald, O. H., and Kupferman, R., Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci., 97 (2000), pp. 2968–2973.

[7]
W. E, , Khanin, K., Mazel, A. and Sinai, Y., Invariant measures for burgers equation with stochastic forcing, Ann. Math., 151 (2000), pp. 877–960.

[8]
Frankel, D. and Smit, B., Understanding Molecular Simulation, 2nd edition, Academic Press, San Diego, 2001.

[9]
Frisch, U., Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1996.

[10]
Ghanem, R. and Spanos, P., Stochastic Finite Element: A Spectral Approach, Springer-Verlag, New York, 1991.

[11]
Gillespie, D. T., Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem., 58 (2007), pp. 35–55.

[12]
Gillespie, C. S., Moment-closure approximations for mass-action models, IET Sys. Bio., 3 (2009), pp. 52–58.

[13]
Hou, T. Y., Luo, W., Rozovskii, B. and Zhou, H., Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics, J. Comp. Phys., 216 (2006), pp. 687–706.

[14]
Lee, C., Kim, K. and Kim, P., A moment closure method for stochastic reaction networks, J. Chem. Phys., 130 (2009), 134107.

[15]
Leggett, A. J.
et al., Dynamics of the dissipative two-state system, Rev. Mod. Phys., 59 (1987), pp. 1–85.

[16]
McAdams, H. H. and Arkin, A., Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci., 94 (1997), pp. 814–819.

[17]
Mori, H., Transport, Collective Motion, and Brownian Motion, Prog. Theor. Phys., 33 (1965), pp. 423–455.

[18]
Orszag, S. A. and Bissonnette, L. R., Dynamical properties of truncated wiener hermite expansions, Phys. Fluids, 10 (1967), pp. 2603–2613.

[19]
Schmiedl, T. and Seifert, U., Stochastic thermodynamics of chemical reaction networks, J. Chem. Phys., 126 (2007), 044101.

[20]
Shao, J., Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys., 120(11) (2004), pp. 5053–5056.

[21]
Szegö, G., Orthogonal Polynomials, 4th ed., Amer. Math. Soc., Rhode Island, 1975.

[22]
Xiu, D. and Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), pp. 619–644.

[23]
Xiu, D. and Hesthaven, J. S., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005), pp. 1118–1139.

[24]
Yan, Y., Yang, F., Liu, Y., and Shao, J., Hierarchical approach based on stochastic decoupling to dissipative systems, Chem. Phys. Lett., 395 (2004), pp. 216–221.

[25]
Zhou, Y. and Shao, J., Solving the spin-boson model of strong dissipation with flexible random-deterministic scheme, J. Chem. Phys., 128 (2008), 034106.