[1]
Gabriele, A., Spyropoulos, F., and Norton, I. T., Kinetic study of fluid gel formation and viscoelastic response with kappa-carrageenan, Food Hydrocolloid., 23 (2009), pp. 2054–2061.

[2]
Tan, W. C. and Masuoka, T., Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary, Int. J. Nonlin. Mech., 40 (2005), pp. 515–522.

[3]
Christov, I. C., Stokes’ first problem for some non-newtonian fluids: results and mistakes, Mech. Res. Commun., 37 (2010), pp. 717–723.

[4]
Hayat, T., Moitsheki, R. J., and Abelmanc, S., Stokes’ first problem for Sisko fluid over a porous wall, Appl. Math. Comput., 217 (2010), pp. 622–628.

[5]
Fetecǎu, C., The Rayleigh-Stokes problem for heated second grade fluids, Int. J. Nonlin. Mech., 37 (2002), pp. 1011–1015.

[6]
Abelman, S., Hayat, T. and Momoniat, E., On the Rayleigh problem for a Sisko fluid in a rotating frame, Appl. Math. Comput., 215 (2009), pp. 2515–2520.

[7]
Xue, C. F. and Nie, J. X., Exact solutions of Stokes’ first problem for heated generalized Burgers’ fluid in a porous half-space, Nonlinear Anal-Real., 9 (2008), pp. 1628–1637.

[8]
Jamil, M., Rauf, A., Zafar, A. A., and Khan, N. A., New exact analytical solutions for Stokes’ first problem of Maxwell fluid with fractional derivative approach, Comput. Math. Appl., 62 (2011), pp. 1013–1023.

[9]
Shen, F., Tan, W. C., and Zhao, Y., The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model, Nonlinear Anal-Real., 7 (2006), pp. 1072–1080.

[10]
Xue, C. F. and Nie, J. X., Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space, Appl. Math. Model., 33 (2009), pp. 524–531.

[11]
Chen, C. M., Liu, F. and Anh, V., A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative, J. Comput. Appl. Math., 223 (2009), pp. 777–789.

[12]
Wu, C. H., Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative, Appl. Numer. Math., 59 (2009), pp. 2571–2583.

[13]
Lin, Y. Z. and Jiang, W., Numerical method for stokes’ first problem for a heated generalized second grade fluid with fractional derivative, Numer. Methods Partial Differential Equations., 27 (2011), pp. 1599–1609.

[14]
Chen, C. M., Liu, F., Turner, I. and Anh, V., Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes’ first problem for a heated generalized second grade fluid, Comput. Math. Appl., 62 (2011), pp. 971–986.

[15]
Chen, C. M., Liu, F. and Anh, V., Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Appl. Math. Comput., 204 (2008), pp. 340–351.

[16]
Zhuang, P. H., Liu, Q. X., Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative, Appl. Math. Mech. Engl. Ed., 30 (2009), pp. 1533–1546.

[17]
Mohebbi, A., Abbaszadeh, M., and Dehghan, M., Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Comput. Method. Appl. M., 264 (2013), pp. 163–177.

[18]
Chen, C. M., Liu, F., Burrage, K., and Chen, Y., Numerical methods of the variable-order Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative, IMA J. Appl. Math., 78 (2013), pp. 924–944.

[19]
Tian, W., Zhou, H. and Deng, W. H., A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., 84 (2015), pp. 1703–1727.

[20]
Wang, Z. and Vong, S., Compact difference schemes for the modified anomalous fractional subdiffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277 (2014), pp. 1–15.

[21]
Liao, H. L. and Sun, Z. Z., Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Meth. Part. D. E., 26 (2010), pp. 37–60.

[22]
Sun, Z. Z., Numerical Methods of Partial Differential Equations, 2nd ed., Science Press, Beijing, 2012.

[23]
Gao, G. H., Sun, H. W. and Sun, Z. Z., Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys., 298 (2015), pp. 337–359.

[24]
Quarteroni, A. and Valli, A., Numerical Approximation of Partial Differential Equations, Springer, Berlin, 1997.