Skip to main content Accessibility help
×
Home

Accuracy Enhancement of Discontinuous Galerkin Method for Hyperbolic Systems

  • Tie Zhang (a1) and Jingna Liu (a1)

Abstract

We study the enhancement of accuracy, by means of the convolution post-processing technique, for discontinuous Galerkin(DG) approximations to hyperbolic problems. Previous investigations have focused on the superconvergence obtained by this technique for elliptic, time-dependent hyperbolic and convection-diffusion problems. In this paper, we demonstrate that it is possible to extend this post-processing technique to the hyperbolic problems written as the Friedrichs’ systems by using an upwind-like DG method. We prove that the L 2-error of the DG solution is of order k+1/2, and further the post-processed DG solution is of order 2k+1 if Qk -polynomials are used. The key element of our analysis is to derive the (2k+1)-order negative norm error estimate. Numerical experiments are provided to illustrate the theoretical analysis.

Copyright

Corresponding author

Corresponding author. Email address: ztmath@163.com

References

Hide All
[1] Bramble, J.H. and Schatz, A.H., Higher order local accuracy by averaging in the finite element method, Mathematics of Computation, 31 (1977), pp. 94–111.
[2] Cockburn, B., Luskin, M., Shu, C.W. and Süli, E., Enhanced accuracy by podt-processing for finite element methods for hyperbolic equations, Mathematics of Computation, 72 (2003), pp. 577–606.
[3] Cockburn, B., Karniadakis, G.E. and Shu, C.W., Discontinuous Galerkin Methods. Theory, Computation and Applications, Lecture Notes Comput. Sci. Eng., Vol. 11, Springer-Verlag, Berlin, 2000.
[4] Cockburn, B., Dong, B. and Guzméan, J., Optimal convergence of the original DG method for the transport-reaction equation on special meshes, SIAM J. Numer. Anal., 46 (2008), pp. 1250–1265.
[5] Ern, A. and J.Guermond, L., Discontinuous Galerkin methods for Friedrichs’ systems, I. general theory, SIAM J. Numer. Anal., 44 (2006), pp. 753–778.
[6] Falk, R.S. and Richter, G.R., Explicit finite element methods for symmetric hyperbolic equations, SIAM J. Numer. Anal., 36 (1999), pp. 935–952.
[7] Friedrichs, K., Symmetric positive linear differential equations, Comm. Pure Appl. Math., 11 (1958), pp. 333–418.
[8] Johnson, C., U. Nävert, and Pitkaranta, J., Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45 (1984), pp. 285–312.
[9] Ji, L.Y., Xu, Y. and Ryan, J.K., Accuracy-enhancement of discontinuous Galerkin solutions for convection-diffusion equations in multiple-dimensions, Mathematics of Computation, 81 (2012), pp. 1929–1950.
[10] Krizek, M., Neittaanmaki, P. and Stenberg, R., Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates, Lecture Notes in Pure and Applied Mathematics Series, Vol. 196, Dekker, Inc., New York, 1997.
[11] Lin, Q. and Zhu, Q.D., The Preprocessing and Postprocessing for the Finite Element Methods, Shanghai Sci. & Tech. Publishing, Shanghai, China, 1994.
[12] Lesaint P, P. and Raviart, P.A., On a finite element method for solving the neutron transport equation, in: Mathematical Aspects of Finite Elements in Partial Differential Equations, de Boor, C., ed. Academic Press, New York, 1974, pp. 89–145.
[13] Monk, P. and Richter, G.R., A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media, J. Sci. Compu., 22 (2005), pp. 443–477.
[14] Mirzaee, H., Ji, L., Ryan, J.K. and Kirby, R.M., Smoothness-increasing accuracy-conserving (SIAC) post-processing for discontinuous Galerkin solutions over structured triangular meshes, SIAM Journal on Numerical Analysis, 49 (2011), pp. 1899–1920.
[15] Peterson, T.E., A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal., 28 (1991), pp. 133–140.
[16] Richter, G., An optimal-order error estimate for discontinuous Galerkin method, Math. Comp., 50 (1988), pp. 75–88.
[17] Rauch, J., L2 is a continuable initial condition for Kreiss’ mixed problems, Comm. Pure Appl. Math. 25 (1972), pp. 265–285.
[18] Ryan, J.K., Shu, C.W. and Atkins, H., Extension of a post-processing technique for the discontinuous Galerkin method for hyperbolic equations with application to an aeroacoustic problem, SIAM J. Sci. Comput., 26 (2005), pp. 821–843.
[19] Vila, J.P. and Villedieu, P., Convergence of an explicit finite volume scheme for first order symmetric systems, Numer. Math., 94 (2003), pp. 573–602.
[20] Zienkiewicz, O.C. and Zhu, J.Z., The superconvergence patch recovery and a posterior error estimates, Part 1: the recovery technique, Int. J. Numer. Methods Engrg. 33 (1992), pp. 1331–1364.
[21] Zhang, Z., Ultraconvergence of the patch recovery technique II, Math. Comput. 69 (2000), pp. 141–158.
[22] Zhang, T., Discontinuous finite element method for first order hyperbolic system of equations, J. of Northeastern Univ., 22 (1987), pp. 250–257.

Keywords

Related content

Powered by UNSILO

Accuracy Enhancement of Discontinuous Galerkin Method for Hyperbolic Systems

  • Tie Zhang (a1) and Jingna Liu (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.