Skip to main content Accessibility help
×
Home

3D Anisotropic Diffusion on GPUs by Closed-Form Local Tensor Computations

  • Arjan Kuijper (a1) (a2), Andreas Schwarzkopf (a2), Thomas Kalbe (a2), Chandrajit Bajaj (a3), Stefan Roth (a2) and Michael Goesele (a2)...

Abstract

We present an efficient implementation of volumetric anisotropic image diffusion filters on modern programmable graphics processing units (GPUs), where the mathematics behind volumetric diffusion is effectively reduced to the diffusion in 2D images. We hereby avoid the computational bottleneck of a time consuming eigenvalue decomposition in ℝ3. Instead, we use a projection of the Hessian matrix along the surface normal onto the tangent plane of the local isodensity surface and solve for the remaining two tangent space eigenvectors. We derive closed formulas to achieve this and prevent the GPU code from branching. We show that our most complex volumetric anisotropic diffusion filters gain a speed up of more than 600 compared to a CPU solution.

Copyright

Corresponding author

Corresponding author. Email : arjan.kuijper@gris.informatik.tu-darmstadt.de

References

Hide All
[1] Agelas, L. and Masson, R.. Convergence of thefinite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes. Comptes Rendus Mathematique, 346(17-18):1007–1012, 2008.
[2] Al-Amoudi, A., Castaño-Diez, D., Devos, D.P., Russell, R.B., Johnson, G.T., and Frangakis, A.S.. The three-dimensional molecular structure of the desmosomal plaque. Proc. Natl. Acad. Sci. USA, 108(16):6480–5, 2011.
[3] Bajaj, C.L., Wu, Q., and Xu, G.. Level set based volumetric anisotropic diffusion for 3D image denoising. ICES TR03-10, UTexas, Austin USA, 2003.
[4] Bajaj, C.L. and Xu, G.. Adaptive surfaces fairing by geometric diffusion. In Symp. CAGD, pages 731–737, 2001.
[5] Bajaj, C.L. and Xu, G.. Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. Graph., 22(1):4–32, 2003.
[6] Beyer, J., Langer, C., Fritz, L., Hadwiger, M., Wolfsberger, S., and Bühler, K.. Interactive diffusion-based smoothing and segmentation of volumetric datasets on graphics hardware. Methods Inf. Med., 46(3):270–274, 2007.
[7] Binotto, A., Weber, D., Daniel, C., Stork, A., Pereira, C.E., Kuijper, A., and Fellner, D.. Iterative sle solvers over a cpu-gpu platform. In 12th IEEE International Conference on High Performance Computing and Communications, IEEE HPCC-10 (September 1-3, 2010, Melbourne, Australia), pages 305–313. IEEE, 2010.
[8] Duan, Y., Wang, Y., Tai, X.-C., and Hahn, J.. A fast augmented lagrangian method for euler’s elastica model. In Third International Conference on Scale Space Methods and Variational Methods in Computer Vision (SSVM) (May 29th - June 2nd, 2011, Ein Gedi, Israel), LNCS 6667, pages 144–156, 2011.
[9] Durand, F. and Dorsey, J.. Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph., 21(3):257–266, 2002.
[10] Frangakis, A.S. and Hegerl, R.. Nonlinear anisotropic diffusion in three-dimensional electron microscopy. In Scale-Space Theories in Computer Vision, Second International Conference, Scale-Space’99, LNCS 1682, pages 386–397, 1999.
[11] Galic, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., and Seidel, H.-P.. The structure of images. Journal of Mathematical Imaging and Vision, 31:255–269, 2008.
[12] Golub, G.H. and Van Loan, C.F.. Matrix computations (3rd ed.). Johns Hopkins University Press, Baltimore, MD, USA, 1996.
[13] Grewenig, S., Weickert, J., and Bruhn, A.. Parallel implementations of AOS schemes: A fast way of nonlinear diffusion filtering. In Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (Eds.): Pattern Recognition. LNCS 6376, pages 533–542, 2010.
[14] Hadwiger, M., Sigg, C., Scharsach, H., Bühler, K., and Gross, M.H.. Real-time ray-casting and advanced shading of discrete isosurfaces. Comp. Graph. Forum, 24(3):303–312, 2005.
[15] Jeong, W., Whitaker, R., and Dobin, M.. Interactive 3D seismic fault detection on the graphics hardware. In Proc. Volume Graphics, pages 111–118, 2006.
[16] Kalbe, T., Koch, T., and Goesele, M.. High-quality rendering of varying isosurfaces with cubic1 trivariate c -continuous splines. In Advances in Visual Computing, 5th International Symposium, ISVC 2009 (1), LNCS 5875, pages 596–607, 2009.
[17] Kalbe, T., Schwarzkopf, A., Goesele, M., Kuijper, A., and Bajaj, C.. Volumetric nonlinear anisotropic diffusion on GPUs. In Third International Conference on Scale Space Methods and Variational Methods in Computer Vision (SSVM) (May 29th - June 2nd, 2011, Ein Gedi, Israel), LNCS 6667, pages 62–73, 2011.
[18] Keller, P.J., Schmidt, A.D., Santella, A., Khairy, K., Bao, Z., Wittbrodt, J., and Stelzer, E.H.K.. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods, 7(8):637–42, 2010.
[19] Kindlmann, G., Whitaker, R., Tasdizen, T., and Möller, T.. Curvature-based transfer functions for direct volume rendering: Methods and applications. In Proc. IEEE Vis., pages 513–520, 2003.
[20] Koenderink, J.J.. The structure of images. Biological Cybernetics, 50:363–370, 1984.
[21] Kuijper, A.. Geometrical PDEs based on second order derivatives of gauge coordinates in image processing. Image and Vision Computing, 27(8):1023–1034, 2009.
[22] Kuijper, A., Florack, L.M.J., and Viergever, M.A.. Scale space hierarchy. Journal of Mathematical Imaging and Vision, 18(2):169–189, April 2003.
[23] Kuijper, A. and Florack, L.M.J.. The hierarchical structure of images. IEEE Transactions on Image Processing, 12(9):1067–1079, 2003.
[24] Lindeberg, T.. Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1994.
[25] Lindeberg, T.. Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. Journal of Mathematical Imaging and Vision, pages 1–46, 2010.
[26] Lipnikov, K., Shashkov, M., Svyatskiy, D., and Vassilevski, Y.. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. Journal of Computational Physics, 227(1):492–512, 2007.
[27] Morigi, S., Rucci, M., and Sgallari, F.. Nonlocal surface fairing. In Third International Conference on Scale Space Methods and Variational Methods in Computer Vision (SSVM) (May 29th - June 2nd, 2011, Ein Gedi, Israel), LNCS 6667, pages 38–49, 2011.
[28] Paris, S., Kornprobst, P., Tumblin, J., and Durand, F.. A gentle introduction to bilateral filtering and its applications. SIGGRAPH course, 2007.
[29] Perona, P. and Malik, J.. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence, 12:629–639, 1990.
[30] Schwarzkopf, A.. Volumetrische anisotrope diffusion auf der GPU. Technische Universität Darmstadt, 2010.
[31] Sigg, C.. Representation and Rendering of Implicit Surfaces. PhD thesis, ETH Zurich, 2006.
[32] Tabik, S., Garzon, E.M., Garcia, I., and Fernandez, J.J.. Implementation of anisotropic nonlinear diffusion for filtering 3D images in structural biology on SMP clusters. In Parallel Computing: Current & Future Issues of High-End Computing, volume 33 of Proc. Int. Conf. ParCo, pages 727-734, 2005.
[33] Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S.. Geometric surface smoothing via anisotropic diffusion of normals. In Proc. VIS ‘02, pages 125-132, 2002.
[34] Tomasi, C. and Manduchi, R.. Bilateral filtering for gray and color images. In Proc. IEEE Int. Conf. on Computer Vision ‘98, pages 839846, 1998.
[35] Weickert, J.. Scale-space properties of nonlinear diffusion filtering with a diffusion tensor. Technical report, No. 110, Laboratory of Technomathematics, University of Kaiserslautern, Germany, 1994.
[36] Weickert, J., Zuiderveld, K.J., Ter Haar|Romeny, B.M., and Niessen, W.J.. Parallel implementations of AOS schemes: A fast way of nonlinear diffusion filtering. In Proc. 1997 IEEE International Conference on Image Processing (ICIP-97, Santa Barbara, Oct. 26-29, 1997), Vol. 3, pages 396399, 1997.
[37] Weickert, J.. A review of nonlinear diffusion filtering. In Scale-Space Theory in Computer Vision, volume 1252 of Lecture Notes in Computer Science, pages 128. Springer Berlin/Heidelberg, 1997.
[38] Weickert, J.. Anisotropic Diffusion in Image Processing. B.G. Teubner Stuttgart, 1998.
[39] Weickert, J.. Coherence enhancing diffusion filtering. International Journal of Computer Vision, 31:111127, 1999.
[40] Weickert, J.. Partial differential equations in image processing and computer vision. Habilitation thesis, University of Mannheim, 2001. http://www.mia.uni-saarland.de/weickert/Papers/habil.pdf.
[41] Zhang, X.F., Chen, WF., Qian, L., and Ye, H.. Affine invariant non-linear anisotropic diffusion smoothing strategy for vector-valued images. Imaging Science Journal, 58(3): 119124, 2010.
[42] Zhao, Y.. Lattice Boltzman based PDE solver on the GPU. The Visual Computer, 24(5):323333, 2008.

Keywords

3D Anisotropic Diffusion on GPUs by Closed-Form Local Tensor Computations

  • Arjan Kuijper (a1) (a2), Andreas Schwarzkopf (a2), Thomas Kalbe (a2), Chandrajit Bajaj (a3), Stefan Roth (a2) and Michael Goesele (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed