Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-z4vvc Total loading time: 0.423 Render date: 2021-03-06T05:37:49.868Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica)

Published online by Cambridge University Press:  01 October 1999

THORSTEN E. E. GRAMS
Affiliation:
GSF-National Research Center for Environment and Health, Phytotron Unit, Institute of Soil Ecology, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany Faculty of Forest Sciences, Department of Forest Botany, Ludwig Maximilians University of Munich, Am Hochanger 13, D-85354 Freising, Germany
SABINE ANEGG
Affiliation:
GSF-National Research Center for Environment and Health, Institute of Biochemical Plant Pathology, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
KARL-HEINZ HÄBERLE
Affiliation:
Faculty of Forest Sciences, Department of Forest Botany, Ludwig Maximilians University of Munich, Am Hochanger 13, D-85354 Freising, Germany
CHRISTIAN LANGEBARTELS
Affiliation:
GSF-National Research Center for Environment and Health, Institute of Biochemical Plant Pathology, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
RAINER MATYSSEK
Affiliation:
Faculty of Forest Sciences, Department of Forest Botany, Ludwig Maximilians University of Munich, Am Hochanger 13, D-85354 Freising, Germany
Get access

Abstract

Young trees of European beech (Fagus sylvatica) acclimated for one growing season to ambient (c. 367 μl l−1) or elevated CO2 levels (c. 660 μl l−1) were exposed during the subsequent year to combinations of the same CO2 regimes and ambient or twice-ambient ozone (O3) levels (generated from the database of a rural site). By the end of June, before the development of macroscopic leaf injury, the raised O3 levels had not affected the light and dark reactions of photosynthesis. However, acclimation to elevated CO2 had resulted in lowered chlorophyll and nitrogen concentrations, whereas photosynthetic performance, examined over a wide range of parameters from light and dark reactions, remained unchanged or showed only slight reductions (e.g. apparent electron transport rate, ETR; apparent quantum yield of CO2 gas exchange, ΦCO2; apparent carboxylation efficiency, CE; and photosynthetic capacity at light and CO2 saturation, PC). In August, after the appearance of leaf necroses, plants grown under ambient CO2 and twice-ambient O3 conditions declined in both the photosynthetic light reactions (optimum electron quantum yield, Fv/Fm, non-photochemical energy quenching, NPQ, reduction state of QA, apparent electron quantum yield, ΦPSII, maximum electron transport rates) and the dark reactions as reflected by CE, ΦCO2, as well as the maximum CO2 uptake rate (i.e. PC). CE, ΦCO2 and PC were reduced by c. 75, 40 and 75%, respectively, relative to plants exposed to ambient CO2 and O3 levels. By contrast, plants exposed to twice-ambient O3 and elevated CO2 levels maintained a photosynthetic performance similar to individuals grown either under ambient CO2 and ambient O3, or elevated CO2 and ambient O3 conditions. The long-term exposure to elevated CO2 therefore tended to counteract adverse chronic effects of enhanced O3 levels on photosynthesis. Possible reasons for this compensatory effect in F. sylvatica are discussed.

Type
Research Article
Copyright
© Trustees of the New Phytologist 1999

Access options

Get access to the full version of this content by using one of the access options below.

PDF 308 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 6
Total number of PDF views: 17 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *