Skip to main content Accessibility help
×
Home

A dominant connexin43 mutant does not have dominant effects on gap junction coupling in astrocytes

  • Sameh Wasseff (a1), Charles K. Abrams (a2) (a3) and Steven S. Scherer (a1)

Abstract

Dominant mutations in GJA1, the gene encoding the gap junction protein connexin43 (Cx43), cause oculodentodigital dysplasia (ODDD), a syndrome affecting multiple tissues, including the central nervous system (CNS). We investigated the effects of the G60S mutant, which causes a similar, dominant phenotype in mice (Gja1Jrt/+). Astrocytes in acute brain slices from Gja1Jrt/+ mice transfer sulforhodamine-B comparably to that in their wild-type (WT) littermates. Further, astrocytes and cardiomyocytes cultured from Gja1Jrt/+ mice showed a comparable transfer of lucifer yellow to those from WT mice. In transfected cells, the G60S mutant formed gap junction (GJ) plaques but not functional channels. In co-transfected cells, the G60S mutant co-immunoprecipitated with WT Cx43, but did not diminish GJ coupling as measured by dual patch clamp. Thus, whereas G60S has dominant effects, it did not appreciably reduce GJ coupling.

Copyright

Corresponding author

Correspondence should be addressed to: Sameh Wasseff or Steven S. Scherer, Department of Neurology, University of Pennsylvania, 464 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6077, USA emails: swasseff@mail.med.upenn.edu; sscherer@mail.med.upenn.edu

References

Hide All
Alao, M.J., Bonneau, D., Holder-Espinasse, M., Goizet, C., Manouvrier-Hanu, S., Mezel, A. et al. (2010) Oculo-dento-digital dysplasia: lack of genotype-phenotype correlation for GJA1 mutations and usefulness of neuro-imaging. European Journal of Medical Genetics 53, 1922.
Altevogt, B.M. and Paul, D.L. (2004) Four classes of intercellular channels between glial cells in the CNS. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 24, 43134323.
Beltramello, M., Bicego, M., Piazza, V., Ciubotaru, C.D., Mammano, F. and D'Andrea, P. (2003) Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochemical and Biophysical Research Communications 305, 10241033.
Bruzzone, R., White, T.W. and Paul, D.L. (1996) Connections with connexins: the molecular basis of direct intercellular signaling. European Journal of Biochemistry/FEBS 238, 127.
Bukauskas, F.F., Bukauskiene, A., Bennett, M.V. and Verselis, V.K. (2001) Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophysical Journal 81, 137152.
Chanson, M., Kotsias, B.A., Peracchia, C. and O'Grady, S.M. (2007) Interactions of connexins with other membrane channels and transporters. Progress in Biophysics and Molecular Biology 94, 233244.
Cina, C., Maass, K., Theis, M., Willecke, K., Bechberger, J.F. and Naus, C.C. (2009) Involvement of the cytoplasmic C-terminal domain of connexin43 in neuronal migration. Journal of Neuroscience 29, 20092021.
Dermietzel, R., Gao, Y., Scemes, E., Vieira, D., Urban, M., Kremer, M. et al. (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Research. Brain Research Reviews 32, 4556.
Dobrowolski, R., Sasse, P., Schrickel, J.W., Watkins, M., Kim, J.S., Rackauskas, M. et al. (2008) The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans. Human Molecular Genetics 17, 539554.
Elfgang, C., Eckert, R., Lichtenberg-Frate, H., Butterweck, A., Traub, O., Klein, R.A. et al. (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. Journal of Cell Biology 129, 805817.
Elias, L.A., Wang, D.D. and Kriegstein, A.R. (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448, 901907.
Fenwick, A., Richardson, R.J., Butterworth, J., Barron, M.J. and Dixon, M.J. (2008) Novel mutations in GJA1 cause oculodentodigital syndrome. Journal of Dental Research 87, 10211026.
Flenniken, A.M., Osborne, L.R., Anderson, N., Ciliberti, N., Fleming, C., Gittens, J.E. et al. (2005) A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development 132, 43754386.
Giaume, C., Fromaget, C., el Aoumari, A., Cordier, J., Glowinski, J. and Gros, D. (1991) Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 6, 133143.
Giepmans, B.N. and Moolenaar, W.H. (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Current Biology: CB 8, 931934.
Gong, X.Q., Shao, Q., Lounsbury, C.S., Bai, D. and Laird, D.W. (2006) Functional characterization of a GJA1 frameshift mutation causing oculodentodigital dysplasia and palmoplantar keratoderma. Journal of Biological Chemistry 281, 3180131811.
Gutmann, D.H., Zackai, E.H., McDonald-McGinn, D.M., Fischbeck, K.H. and Kamholz, J. (1991) Oculodentodigital dysplasia syndrome associated with abnormal cerebral white matter. American Journal of Medical Genetics 41, 1820.
Iacobas, D.A., Scemes, E. and Spray, D.C. (2004) Gene expression alterations in connexin null mice extend beyond the gap junction. Neurochemistry International 45, 243250.
Kalcheva, N., Qu, J., Sandeep, N., Garcia, L., Zhang, J., Wang, Z. et al. (2007) Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia. Proceedings of the National Academy of Sciences of the U.S.A. 104, 2051220516.
Koulakoff, A., Ezan, P. and Giaume, C. (2008) Neurons control the expression of connexin 30 and connexin 43 in mouse cortical astrocytes. Glia 56, 12991311.
Kumar, N.M. and Gilula, N.B. (1996) The gap junction communication channel. Cell 84, 381388.
Laing, J.G., Tadros, P.N., Westphale, E.M. and Beyer, E.C. (1997) Degradation of connexin43 gap junctions involves both the proteasome and the lysosome. Experimental Cell Research 236, 482492.
Li, X., Ionescu, A.V., Lynn, B.D., Lu, S., Kamasawa, N., Morita, M. et al. (2004) Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and Cx47 association with zonula occludens-1 (ZO-1) in mouse brain. Neuroscience 126, 611630.
Loddenkemper, T., Grote, K., Evers, S., Oelerich, M. and Stogbauer, F. (2002) Neurological manifestations of the oculodentodigital dysplasia syndrome. Journal of Neurology 249, 584595.
Lutz, S.E., Zhao, Y., Gulinello, M., Lee, S.C., Raine, C.S. and Brosnan, C.F. (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. Journal of Neuroscience 29, 77437752.
Maass, K., Ghanem, A., Kim, J.S., Saathoff, M., Urschel, S., Kirfel, G. et al. (2004) Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Molecular Biology of the Cell 15, 45974608.
Manias, J.L., Plante, I., Gong, X.Q., Shao, Q., Churko, J., Bai, D. et al. (2008) Fate of connexin43 in cardiac tissue harbouring a disease-linked connexin43 mutant. Cardiovascular Research 80, 385395.
Manthey, D., Banach, K., Desplantez, T., Lee, C.G., Kozak, C.A., Traub, O. et al. (2001) Intracellular domains of mouse connexin26 and -30 affect diffusional and electrical properties of gap junction channels. Journal of Membrane Biology 181, 137148.
McLachlan, E., Manias, J.L., Gong, X.Q., Lounsbury, C.S., Shao, Q., Bernier, S.M. et al. (2005) Functional characterization of oculodentodigital dysplasia-associated Cx43 mutants. Cell Communication and Adhesion 12, 279292.
Meme, W., Calvo, C.F., Froger, N., Ezan, P., Amigou, E., Koulakoff, A. et al. (2006) Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid. FASEB Journal 20, 494496.
Menichella, D.M., Goodenough, D.A., Sirkowski, E., Scherer, S.S. and Paul, D.L. (2003) Connexins are critical for normal myelination in the CNS. Journal of Neuroscience 23, 59635973.
Musil, L.S. and Goodenough, D.A. (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74, 10651077.
Nagy, J.I., Ionescu, A.V., Lynn, B.D. and Rash, J.E. (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44, 205218.
Nagy, J.I., Patel, D., Ochalski, P.A. and Stelmack, G.L. (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88, 447468.
Nagy, J.I. and Rash, J.E. (2003) Astrocyte and oligodendrocyte connexins of the glial syncytium in relation to astrocyte anatomical domains and spatial buffering. Cell Communication and Adhesion 10, 401406.
Naus, C.C., Bechberger, J.F., Zhang, Y., Venance, L., Yamasaki, H., Juneja, S.C. et al. (1997) Altered gap junctional communication, intercellular signaling, and growth in cultured astrocytes deficient in connexin43. Journal of Neuroscience Research 49, 528540.
Odermatt, B., Wellershaus, K., Wallraff, A., Seifert, G., Degen, J., Euwens, C. et al. (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. Journal of Neuroscience 23, 45494559.
Orthmann-Murphy, J.L., Abrams, C.K. and Scherer, S.S. (2008) Gap junctions couple astrocytes and oligodendrocytes. Journal of Molecular Neuroscience 35, 101116.
Orthmann-Murphy, J.L., Freidin, M., Fischer, E., Scherer, S.S. and Abrams, C.K. (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. Journal of Neuroscience 27, 1394913957.
Paznekas, W.A., Boyadjiev, S.A., Shapiro, R.E., Daniels, O., Wollnik, B., Keegan, C.E. et al. (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. American Journal of Human Genetics 72, 408418.
Paznekas, W.A., Karczeski, B., Vermeer, S., Lowry, R.B., Delatycki, M., Laurence, F. et al. (2009) GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Human Mutation 30, 724733.
Peters, A., Palay, S.L. and Webster, H. (1991) The Fine Structure of the Nervous System, Neurons and Their Supporting Cells, 3rd edition. New York: Oxford University Press.
Plante, I. and Laird, D.W. (2008) Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia. Developmental Biology 318, 312322.
Rash, J.E., Yasumura, T., Davidson, K.G., Furman, C.S., Dudek, F.E. and Nagy, J.I. (2001) Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Communication & Adhesion 8, 315320.
Retamal, M.A., Froger, N., Palacios-Prado, N., Ezan, P., Saez, P.J., Saez, J.C. et al. (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. Journal of Neuroscience 27, 1378113792.
Richardson, R., Donnai, D., Meire, F. and Dixon, M.J. (2004) Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. Journal of Medical Genetics 41, 6067.
de Roos, A.D., van Zoelen, E.J. and Theuvenet, A.P. (1996) Determination of gap junctional intercellular communication by capacitance measurements. Pflugers Archiv: European Journal of Physiology 431, 556563.
Roscoe, W., Veitch, G.I., Gong, X.Q., Pellegrino, E., Bai, D., McLachlan, E. et al. (2005) Oculodentodigital dysplasia-causing connexin43 mutants are non-functional and exhibit dominant effects on wild-type connexin43. Journal of Biological Chemistry 280, 1145811466.
Rouach, N., Koulakoff, A., Abudara, V., Willecke, K. and Giaume, C. (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322, 15511555.
Saura, J. (2007) Microglial cells in astroglial cultures: a cautionary note. Journal of Neuroinflammation 4, 26.
Shibayama, J., Paznekas, W., Seki, A., Taffet, S., Jabs, E.W., Delmar, M. et al. (2005) Functional characterization of connexin43 mutations found in patients with oculodentodigital dysplasia. Circulation Research 96, e83e91.
Sohl, G. and Willecke, K. (2004) Gap junctions and the connexin protein family. Cardiovascular Research 62, 228232.
Tong, D., Colley, D., Thoo, R., Li, T.Y., Plante, I., Laird, D.W. et al. (2009a) Oogenesis defects in a mutant mouse model of oculodentodigital dysplasia. Disease Models amd Mechanisms 2, 157167.
Tong, D., Lu, X., Wang, H.X., Plante, I., Lui, E., Laird, D.W. et al. (2009b) A dominant loss-of-function GJA1 (Cx43) mutant impairs parturition in the mouse. Biology of Reproduction 80, 10991106.
Vink, M.J., Suadicani, S.O., Vieira, D.M., Urban-Maldonado, M., Gao, Y., Fishman, G.I. et al. (2004) Alterations of intercellular communication in neonatal cardiac myocytes from connexin43 null mice. Cardiovascular Research 62, 397406.
Wallraff, A., Kohling, R., Heinemann, U., Theis, M., Willecke, K. and Steinhauser, C. (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. Journal of Neuroscience 26, 54385447.
Wiencken-Barger, A.E., Djukic, B., Casper, K.B. and McCarthy, K.D. (2007) A role for Connexin43 during neurodevelopment. Glia 55, 675686.
Willecke, K., Eiberger, J., Degen, J., Eckardt, D., Romualdi, A., Guldenagel, M. et al. (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biological Chemistry 383, 725737.
Yamamoto, T., Ochalski, A., Hertzberg, E.L. and Nagy, J.I. (1990) On the organization of astrocytic gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression. Journal of Comparative Neurology 302, 853883.
Yum, S.W., Zhang, J., Valiunas, V., Kanaporis, G., Brink, P.R., White, T.W. et al. (2007) Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. American Journal of Physiology. Cell Physiology 293, C1032C1048.
Zhuo, L., Sun, B., Zhang, C.L., Fine, A., Chiu, S.Y. and Messing, A. (1997) Live astrocytes visualized by green fluorescent protein in transgenic mice. Developmental Biology 187, 3642.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Wasseff et al. supplementary material
figure 1

 Unknown (1.2 MB)
1.2 MB
UNKNOWN
Supplementary materials

Wasseff et al. supplementary material
figure 2

 Unknown (547 KB)
547 KB
UNKNOWN
Supplementary materials

Wasseff et al. supplementary material
figure 3

 Unknown (1.3 MB)
1.3 MB
UNKNOWN
Supplementary materials

Wasseff et al. supplementary material
figure 4

 Unknown (1.8 MB)
1.8 MB
UNKNOWN
Supplementary materials

Wasseff et al. supplementary material
figure 5

 Unknown (1.3 MB)
1.3 MB
UNKNOWN
Supplementary materials

Wasseff et al. supplementary material
figure 6

 Unknown (1.2 MB)
1.2 MB

A dominant connexin43 mutant does not have dominant effects on gap junction coupling in astrocytes

  • Sameh Wasseff (a1), Charles K. Abrams (a2) (a3) and Steven S. Scherer (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed