Skip to main content Accessibility help

A variable neighborhood search method for a two-mode blockmodeling problem in social network analysis



This paper presents a variable neighborhood search (VNS) algorithm that is specially designed for the blockmodeling of two-mode binary network matrices in accordance with structural equivalence. Computational results for 768 synthetic test networks revealed that the VNS heuristic outperformed a relocation heuristic (RH) and a tabu search (TS) method for the same problem. Next, the three heuristics were applied to two-mode network data pertaining to the votes of member countries on resolutions in the United Nations General Assembly. A comparative analysis revealed that the VNS heuristic often provided slightly better criterion function values than RH and TS, and that these small differences in criterion function values could sometimes be associated with substantial differences in the actual partitions obtained. Overall, the results suggest that the VNS heuristic is a promising approach for blockmodeling of two-mode binary networks. Recommendations for extensions to stochastic blockmodeling applications are provided.



Hide All
Batagelj, V., & Mrvar, A. (1998). Pajek—Program for large network analysis. Connections, 21, 4757.
Batagelj, V., Mrvar, A., Ferligoj, A., & Doreian, P. (2004). Generalized blockmodeling with Pajek. Metodoloski Zvezki: Journal of the Statistical Society of Slovenia, 1, 455467.
Brusco, M., Doreian, P., Mrvar, A., & Steinley, D. (2013). An exact algorithm for blockmodeling of two-mode network data. Journal of Mathematical Sociology, 37, 6184.
Brusco, M. J. & Köhn, H.-F. (2009). Clustering qualitative data based on binary equivalence relations: A neighborhood search heuristic for the clique partitioning problem. Psychometrika, 74, 685703.
Brusco, M., & Steinley, D. (2007). A variable neighborhood search method for generalized blockmodeling of two-mode binary matrices. Journal of Mathematical Psychology, 51, 325338.
Brusco, M. J., & Steinley, D. (2009). Integer programs for one- and two-mode blockmodeling based on prespecified image matrices for structural and regular equivalence. Journal of Mathematical Psychology, 53, 577585.
Brusco, M. J., & Steinley, D. (2011). A tabu search heuristic for deterministic two-mode blockmodeling of binary network matrices. Psychometrika, 76, 612633.
Clinton, J., Jackman, S., & Rivers, D. (2004). The statistical analysis of roll call data. American Political Science Review, 98, 116.
Davis, A., Gardner, B., & Gardner, M. R. (1941). Deep south. Chicago: University of Chicago Press.
Doreian, P., Batagelj, V., & Ferligoj, A. (2004). Generalized blockmodeling of two-mode network data. Social Networks, 26, 2953.
Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling. Cambridge, UK: Cambridge University Press.
Doreian, P., Lloyd, P., & Mrvar, M. (2013). Partitioning large signed two-mode networks: Problems and prospects. Social Networks, 35, 178203.
Galaskiewicz, J. (1985). Social organization of an urban grants economy. New York: Academic Press.
Grötschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem. Mathematical Programming, 45, 5996.
Grötschel, M., & Wakabayashi, Y. (1990). Facets of the clique partitioning polytope. Mathematical Programming, 47, 367387.
Hansen, P. & Mladenović, N. (1997). Variable neighborhood search for the p-median. Location Science, 5, 207226.
Hansen, P. & Mladenović, N. (2001). J-Means: A new local search heuristic for minimum sum of squares clustering. Pattern Recognition, 34, 405413.
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193218.
Karrer, B., & Newman, M. E. J. (2011). Stochastic blockmodels and community structure in networks. Physical Review E, 83, 016107(110). doi:10.1103/PhysRevE.83.01607.
Kim, S. Y., & Russett, B. (1996). The new politics of voting alignments in the United Nations General Assembly. International Organization, 50, 629652.
Latapy, M., Magnien, C. & Del Vecchio, N. (2008). Basic notions for the analysis of large two-mode networks, Social Networks, 30, 3148.
Lorrain, F., & White, H. C. (1971). Structural equivalence of individuals in social networks. Journal of Mathematical Sociology, 1, 4980.
Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for biological data analysis: A survey. IEEE Transactions in Computational Biology and Bioinformatics, 1, 2445.
Mirkin, B., Arabie, P., & Hubert, L. J. (1995). Additive two-mode clustering: The error-variance approach revisited. Journal of Classification, 12, 243263.
Mische, A., & Pattison, P. (2000). Composing a civic arena: Publics, projects, and social settings. Poetics, 27, 163194.
Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers and Operations Research, 24, 10971100.
Poole, K. T. (2005). Spatial models of parliamentary voting. Cambridge, UK: Cambridge University Press.
Poole, K. T., Lewis, J., Lo, J., & Carroll, R. (2011). Scaling roll call votes with wnominate in R. Journal of Statistical Software, 42 (14), 121.
Poole, K. T., & Rosenthal, H. (1985). A spatial model for legislative roll call analysis. American Journal of Political Science, 29, 357384.
Prelić, A., Blueler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W.,. . . Zitzler, E. (2006). A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22, 11221129.
Protti, F., Dantas da Silva, M., & Szwarcfiter, J. L. (2009). Applying modular decomposition to parameterized cluster editing problems. Theory of Computer Systems, 44, 91104.
Règnier, S. (1965). Sur quelques aspects mathématiques des problèmes de classification automatique. I.C.C. Bulletin, 4, 175191.
Schepers, J. & Van Mechelen, I. (2011). A two-mode clustering method to capture the nature of the dominant interaction pattern in large profile data matrices. Psychological Methods, 16, 361371.
Selim, H. M., Askin, R. G., & Vakharia, A. J. (1998). Cell formation in group technology: Review, evaluation and directions for future research. Computers and Industrial Engineering, 34, 320.
Steinley, D. (2004). Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods, 9, 386396.
van Mechelen, I., Bock, H. H., & DeBoeck, P. (2004). Two-mode clustering methods: A structured overview. Statistical Methods in Medical Research, 13, 363394.
van Rosmalen, J., Groenen, P. J. F., Trejos, J., & Castillo, W. (2009). Optimization strategies for two-mode partitioning. Journal of Classification, 26, 155181.
van Uitert, M., Meuleman, W., & Wessels, L. (2008). Biclustering sparse binary genomic data. Journal of Computational Biology, 15, 13291345.
Voeten, E. (2000). Clashes in the assembly. International Organization, 54, 185217.
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.
Wilderjans, T. F., Depril, D. & Van Mechelen, I. (2013). Additive biclustering: A comparison of one new and two existing ALS algorithms. Journal of Classification, 30, 5674.


A variable neighborhood search method for a two-mode blockmodeling problem in social network analysis



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed