Skip to main content Accessibility help

A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model

  • Philip Leifeld (a1) and Skyler J. Cranmer (a2)


The temporal exponential random graph model (TERGM) and the stochastic actor-oriented model (SAOM, e.g., SIENA) are popular models for longitudinal network analysis. We compare these models theoretically, via simulation, and through a real-data example in order to assess their relative strengths and weaknesses. Though we do not aim to make a general claim about either being superior to the other across all specifications, we highlight several theoretical differences the analyst might consider and find that with some specifications, the two models behave very similarly, while each model out-predicts the other one the more the specific assumptions of the respective model are met.


Corresponding author

*Corresponding author. Email:


Hide All
Amati, V. (2011). New statistics for the parameter estimation of the stochastic actor-oriented model for network change (Ph.D. thesis), Università degli Studi di Milano-Bicocca.
Block, P., Stadtfeld, C., & Snijders, T. A. B. (2019). Forms of dependence: Comparing SAOMs and ERGMs from basic principles. Sociological Methods & Research, 48(1), 202239.
Block, P., Koskinen, J., Hollway, J. Steglich, C., & Stadtfeld, C. (2018). Change we can believe in: Comparing longitudinal network models on consistency, interpretability and predictive power. Social Networks, 52, 180191.
Boulesteix, A.-L., Lauer, S., & Eugster, M. J. A. (2013). A plea for neutral comparison studies in computational sciences. PLOS One, 8(4), e61562.
Butts, C. T. (2008). A relational event framework for social action. Sociological Methodology, 38(1), 155200.
Butts, C. T. (2017). Comment: Actor orientation and relational event models. Sociological Methodology, 47(1), 4756.
Chiba, D., Metternich, N. W., & Ward, M. D. (2015). Every story has a beginning, middle, and an end (but not always in that order): Predicting duration dynamics in a unified framework. Political Science Research and Methods, 3(3), 515541.
Cranmer, S. J., & Desmarais, B. A. (2011). Inferential network analysis with exponential random graph models. Political Analysis, 19(1), 6686.
Cranmer, S. J., Desmarais, B. A., & Menninga, E. J. (2012). Complex dependencies in the alliance network. Conflict Management and Peace Science, 23(3), 279313.
Cranmer, S. J., Heinrich, T., & Desmarais, B. A. (2014). Reciprocity and the structural determinants of the international sanctions network. Social Networks, 36, 522.
Cranmer, S. J., Leifeld, P., McClurg, S. D., & Rolfe, M. (2017). Navigating the range of statistical tools for inferential network analysis. American Journal of Political Science, 61(1), 237251.
Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on machine learning (pp. 233240). Pittsburgh, Pennsylvania, USA: ACM.
Desmarais, B. A., & Cranmer, S. J. (2010). Consistent confidence intervals for maximum pseudolikelihood estimators. In Proceedings of the neural information processing systems 2010 workshop on computational social science and the wisdom of crowds (pp. 14). December 10, 2010. Whistler, Canada: NIPS.
Desmarais, B. A., & Cranmer, S. J. (2012a). Micro-level interpretation of exponential random graph models with application to estuary networks. Policy Studies Journal, 40(3), 402434.
Desmarais, B. A., & Cranmer, S. J. (2012b). Statistical inference for valued-edge networks: The generalized exponential random graph model. PLOS One, 7(1), e30136.
Desmarais, B. A., & Cranmer, S. J. (2012c). Statistical mechanics of networks: Estimation and uncertainty. PhysicaA: Statistical Mechanics and its Applications, 391(4), 18651876.
Dow, M. M., Burton, M. L., White, D. R., & Reitz, K. P. (1984). Galton’s problem as network autocorrelation. American Ethnologist, 11(4), 754770.
Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81(395), 832842.
Goodreau, S. M., Kitts, J., & Morris, M. (2008). Birds of a feather, or friend of a friend? Using exponential random graph models to investigate adolescent social networks. Demography, 46(1), 103125.
Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). statnet: Software tools for the representation, visualization, analysis and simulation of network data. Journal of Statistical Software, 24(1), 111.
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 2936.
Hanneke, S., Fu, W., & Xing, E. P. (2010). Discrete temporal models of social networks. The Electronic Journal of Statistics, 4, 585605.
Hoff, P. D., & Ward, M. D. (2004). Modeling dependencies in international relations networks. Political Analysis, 12(2), 160175.
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97(460), 10901098.
Holland, P. W., & Leinhardt, S. (1977). A dynamic model for social networks. Journal of Mathematical Sociology, 5(1), 520.
Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). ergm: A package to fit, simulate and diagnose exponential-family models for networks. Journal ofStatistical Software, 24(3), 129.
Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2012). Goodness of fit of social network models. Journal of the American Statistical Association, 103(481), 248258.
Iacobucci, D., & Wasserman, S. (1988). A general framework for the statistical analysis of sequential dyadic interaction data. Psychological Bulletin, 103(3), 379390.
Kinne, B. J. (2013). Network dynamics and the evolution of international cooperation. American Political Science Review, 107(4), 766785.
Knecht, A. (2006). Networks and actor attributes in early adolescence. ICS Codebook 61. The Netherlands Research School ICS, Department of Sociology, Utrecht University, Utrecht.
Knecht, A. (2008). Friendship selection and friends’ influence. dynamics of networks and actor attributes in early adolescence (Ph.D. dissertation). University of Utrecht, Utrecht.
Koskinen, J., & Edling, C. (2012). Modelling the evolution of a bipartite network. Peer referral in interlocking directorates. Social Networks, 34(3), 309322.
Leifeld, P., Cranmer, S. J., & Desmarais, B. A. (2017). xergm: Extensions of exponential random graph models. R package version 1.8.2.
Leifeld, P., Cranmer, S. J., & Desmarais, B. A. (2018). Temporal exponential random graph models with btergm: Estimation and bootstrap confidence intervals. Journal of Statistical Software, 83(6), 136.
Lerner, J., Indlekofer, N., Nick, B., & Brandes, U. (2013). Conditional independence in dynamic networks. Journal of Mathematical Psychology, 57(6), 275283.
Lusher, D., Koskinen, J., & Robins, G. (2013). Exponential random graph models for social network analysis. New York, NY: Cambridge University Press.
Montgomery, J. M., Hollenbach, F. M., & Ward, M. D. (2015). Calibrating ensemble forecasting models with sparse data in the social sciences. International Journal of Forecasting, 31(3), 930942.
Morris, M., Handcock, M. S., & Hunter, D. R. (2008). Specification of exponential-family random graph models: Terms and computational aspects. Journal ofStatistical Software, 24(4), 14.
R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ripley, R., Boitmanis, K., Snijders, T. A. B., & Schoenenberger, F. (2017a). RSiena: Siena—Simulation investigation for empirical network analysis. R package version 1.2–3.
Ripley, R. M., Snijders, T. A. B., Boda, Z., Vörös, A., & Preciado, P. (2017b). Manual for RSiena. Oxford: Department of Statistics, Nuffield College, University of Oxford.
Robins, G., & Pattison, P. (2001). Random graph models for temporal processes in social networks. Journal of Mathematical Sociology, 25(1), 541.
Runger, G., & Wasserman, S. (1980). Longitudinal analysis of friendship networks. Social Networks, 2(2), 143154.
Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005). ROCR: Visualizing classifier performance in R. Bioinformatics, 21(20), 39403941.
Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. Sociological Methodology, 31, 361395.
Snijders, T. A. B. (2005). Models for longitudinal network data. In Carrington, P. J., Scott, J., and Wasserman, S. (Eds.), Models and methods in social network analysis (Chap. 11, pp. 225257). New York, NY: Cambridge University Press.
Snijders, T. A. B. (2017). Stochastic actor-oriented models for network dynamics. Annual Review of Statistics and its Application, 2017(4), 343363.
Snijders, T. A. B., & van Duijn, M. (1997). Simulation for statistical inference in dynamic network models. In Conte, R., Hegselmann, R., and Terna, P. (Eds.), Simulating social phenomena. Lecture Notes in Economics and Mathematical Systems (vol. 456, pp. 493512). Berlin: Springer.
Snijders, T. A. B., Steglich, C. E. G., & Schweinberger, M. (2007). Modeling the co-evolution of networks and behavior. In van Montfort, K., Oud, H., and Satorra, A. (Eds.), Longitudinal models in the behavioral and related sciences (pp. 4171). Mahwah, NJ: Lawrence Erlbaum.
Snijders, T. A. B., Lomi, A., & Torló, V. J. (2013). A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice. Social Networks, 35(2), 265276.
Snijders, T. A. B., van de Bunt, G. G., & Steglich, C. E. G. (2010). Introduction to stochastic actor-based models for network dynamics. Social Networks, 32(1), 4460.
Stadtfeld, C. (2013). NetSim: A social networks simulation tool in R. R package version 0.9. Retrieved January 7, 2018, from Package Vignette Retrieved January 31, 2019, from
Stadtfeld, C., & Block, P. (2017). Interactions, actors, and time: Dynamic network actor models for relational events. Sociological Science, 4, 318352.
Stadtfeld, C., Hollway, J., & Block, P. (2017a). Dynamic network actor models: Investigating coordination ties through time. Sociological Methodology, 47(1), 140.
Stadtfeld, C., Hollway, J., & Block, P. (2017b). Rejoinder: DyNAMs and the grounds for actor-oriented network event models. Sociological Methodology, 47(1), 5667.
Steglich, C. E. G., Snijders, T. A. B., & Pearson, M. (2010). Dynamic networks and behavior: Separating selection from influence. Sociological Methodology, 40(1), 329393.
Veenstra, R., Dijkstra, J. K., Steglich, C. E. G., & van Zalk, M. H. W. (2013). Network-behavior dynamics. Journal of Research on Adolescence, 23(3), 399412.
Wang, P., Robins, G., Pattison, P., & Lazega, E. (2013). Exponential random graph models for multilevel networks. Social Networks, 35(1), 96115.
Ward, M. D, Metternich, N. W, Dorff, C. L, Gallop, M., Hollenbach, F. M, Schultz, A., & Weschle, S. (2013). Learning from the past and stepping into the future: Toward a new generation of conflict prediction. International Studies Review, 15(4), 473490.
Warren, T. C. (2016). Modeling the coevolution of international and domestic institutions: Alliances, democracy, and the complex path to peace. Journal ofPeace Research, 53(3), 424441.
Wasserman, S., & Iacobucci, D. (1986). Statistical analysis of discrete relational data. British Journal of Mathematical and Statistical Psychology, 39(1), 4164.
Wasserman, S., & Iacobucci, D. (1988). Sequential social network data. Psychometrika, 53(2), 261282.
Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p* models. Psychometrika, 61(3), 401425.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed